Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics West 2017: Smart systems and production processes for large-scale optics manufacturing

31.01.2017

When manufacturing optical lenses, every detail counts. In order to increrase stability of manufacturing processes while making them faster and more cost-efficient at the same time, Fraunhofer researchers are developing tools and production processes for optical elements of new glass materials. At the Photonics West trade fair in San Francisco from January 28 to February 2, 2017, Fraunhofer experts will be showing how Industry 4.0 approaches can improve the development and manufacture of glass optics and how companies in the optics market can profit from new techonologies and digital tools, like simulations on smart glasses or tablets.

Glass Molding: Cost-efficient large-scale production of high-precision optics


The simulation shows in real time how the blank conforms to the shape of the tools that are pressing it and how the lens then slowly cools.

Source: Fraunhofer IPT

According to a study undertaken by the management consultants McKinsey, LED lighting will account for approx. 70 percent of the lighting market by the year 2020. The requirement for complex header optics which direct the light is projected to increase in tandem with the number of LEDs.

Glass optics come into their own wherever particularly high levels of resistance to extreme temperatures and UV radiation are required. The non-isothermal glass molding technique permits these to be manufactured in one single manufacturing step: a pre-portioned glass blank is heated to temperatures of up to 900 °C in a special heating furnace then formed under high pressure within only a few seconds. The short process times along with the fact that no further steps are required for finishing makes this process ideal for large-scale manufacture.

The aim of the ongoing research and development work at the Fraunhofer IPT is to increase the dimensional accuracy of the optics manufactured in non-isothermal glass molding operations. As part of this development, forming tools made of new ceramic materials with particularly long service life are used in manufacturing processes, which have been specially adapted for these tools.

Additional work currently underway at the Fraunhofer IPT focuses on the manufacture of extremely small glass optics, only a few millimeters in diameter. The tools used were high-precision molding tools whose dimensions were calculated by the researchers in Aachen using a specially developed FEM simulation module.

Tools for high-volume infrared optics production

Infrared optics are currently used predominantly in relatively high-end technical equipment and facilities: night vision systems allow drivers to see people and animals even in low light conditions at night. Thermal imagers help building owners and surveyors to detect leaks and cold bridges in buildings.

Until now, infrared optics have been manufactured in grinding and polishing operations or in machining operations which are comparatively expensive. Precision glass molding, in which a preform is shaped in a press under direct influence of heat, can reduce the costs since larger numbers of optical components are formed to specification in one single process step.

The Fraunhofer IPT is scrutinizing and testing all of the main elements involved in precision molding infrared optics from chalcogenide glass – starting with the question as to how the high precision, aluminum alloy can be machined using monocrystalline diamonds. Within a research project, the engineers in Aachen are also developing special wear resistant coatings, which significantly prolong tool life. A simulation model, developed specially for forming chalcogenide glass, permits forming processes to be designed with enormous precision. Even before the very first pressing trial, all of the process parameters can be determined, thereby slashing both the outlay otherwise required for process development and the amount of scrap generated.

Smart Wearables: Digitization of manufacturing processes help to increase product quality

Looking inside the "black box" of the machine is just one more component of the new concepts with which the researchers from Fraunhofer IPT are currently optimizing the mass production of optical lenses. To be able to benefit from the digital information from all process steps, they have developed independent, web-based software. This software runs on standard devices such as laptops, smartphones and smart glasses, and requires no installation. All users – from developers to quality control inspectors – have access to a shared process database.

For the first time, this process can now be followed on a tablet PC, where a simulation shows in real time how the blank conforms to the shape of the tools that are pressing it and how the lens then slowly cools. At the same time, diagrams supply information about where the various forces are acting and how the temperature changes. First studies show how data can be used to optimize the whole manufacturing process – from simulating the process, making molds and coating tools to shaping parts and quality testing the finished optics. Next, the Fraunhofer researchers want to use real-time analysis of process data to ensure that the required quality is achieved and set up an automatic alarm system for when deviations arise.

Contact

Fraunhofer Institute for Production Technology IPT
Holger Kreilkamp
Steinbachstrasse 17
52074 Aachen
Germany
Phone +49 241 8904 -454
holger.kreilkamp@ipt.fraunhofer.de
www.ipt.fraunhofer.de

This press release and a printable photo are also available on the Internet under
www.ipt.fraunhofer.de/en/Press/Pressreleases/20170130_large-scale-optics-manufacturing.html

Weitere Informationen:

http://www.ipt.fraunhofer.de/en/Press/Pressreleases/20170130_large-scale-optics-...

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>