Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-tech in everyday life: Simulation tool for efficient production of non-woven fabrics

01.03.2017

Non-woven fabrics are indispensable to everyday life. A Fraunhofer Institute has developed software that makes the production of non-woven products much more efficient and flexible. With the tool FIDYST, it has been possible for the first time to simulate the movement of fibers in turbulent air currents. A real innovation – and the breakthrough in a theory that is over a hundred years old.

Non-woven materials are usually well hidden and are therefore not visible. However, if you are looking for them, you can find them everywhere: as a lining in winter jackets, as a padding in sofas, as a soundproofing mat in cars, as insulation in house walls, as a filter in kitchen exhaust hoods, as a cosmetic pad in bathrooms or as a separating layer in electric cables.


High-tech material non-woven: Project manager Dr. Simone Gramsch has developed the simulation tool FIDYST with her team.

Fraunhofer ITWM

Highly absorbent non-woven can even be found in the diapers of our little children. It is an extremely versatile and high-performance material which is indispensable in our everyday lives. Accordingly, textile manufacturers and mechanical engineers are interested in keeping its production as efficient and flexible as possible.

The Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern has developed special software called the FIDYST tool (Fiber Dynamics Simulation Tool). It simulates the movement of fibers in turbulent air flows. In the production of non-woven materials, the fibers or threads are each stretched with the aid of air and deposited onto a conveyor belt.

Depending on the speed and temperature of the air stream, a non-woven product with the desired structure, density and strength results. One widely used application is random web, in which the individual fibers display a diverse orientation, thereby forming a random web which is simultaneously voluminous and firm.

How precisely the fibers move in the airflow and in which orientation they land on the conveyor belt is computed by the simulation software FIDYST which the researchers have developed. After simulating the airflow, the user only has to enter the material properties of the fibers in the software.

The software then simulates the dynamic behavior of thousands of fibers. Even fiber mixtures can be simulated with the software. The result can be visualized in a three-dimensional representation.

Equipped with this data, the manufacturer can then, for example, improve the air flow in a targeted manner. This results in a non-woven fabric with the desired specification while at the same time reducing energy and raw material consumption. The software simulation can calculate that by changing the configuration of the machine, fewer fibers are needed to produce a non-woven fabric with the desired structure and strength.

The Fraunhofer tool not only benefits the textile manufacturers who want to precisely configure their machines for every desired non-woven product. "Mechanical engineers can also use it to create machines that are as efficient and flexible as possible," explains Dr. Simone Gramsch, FIDYST Project Manager at ITWM.

Despite the complex computing operations, FIDYST does not rely on expensive, high-performance computers or data centers; the tool is content with standard PCs of the upper performance class and runs on both Windows and Linux.

Unique feature of Fraunhofer

After the calculation, the data can be exported in the "EnSight Gold Case" format and then visualized and analyzed. The format is standard in applications that deal with the visualization and analysis of flow dynamics of all kinds, such as in aircraft or automotive engineering, but also in sports or medicine.

Behind FIDYST is a real world premier. For the first time, it has been possible to precisely simulate and predict fiber dynamics in air currents. "The development is the result of several years of research as well as a few doctoral theses. It has been worth it, though; with FIDYST, we have a unique feature," says project manager Simone Gramsch.

The ITWM licenses the software to mechanical engineers or textile manufacturers. "If necessary, we also offer FIDYST as a service; then, all the simulations are executed on our computers according to the specifications of the customer," says Gramsch. This is useful when it comes to particularly complex and, therefore, computer-intensive projects.

Mathematics lovers might be interested in the topic for another reason. More than 100 years ago, the French mathematicians Eugène and François Cosserat worked on equations to describe the behavior of elastic materials. The theory of Cosserat-Rods, named after them, ultimately formed the basis for the Fraunhofer researchers.

The Fraunhofer researchers will present a demo of FIDYST at the INDEX non-woven trade fair in Geneva (April 4 - 7, 2017).

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2017/march/simulation-tool-for-...

Ilka Blauth | Fraunhofer Institute for Industrial Mathematics ITWM

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>