Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-tech in everyday life: Simulation tool for efficient production of non-woven fabrics

01.03.2017

Non-woven fabrics are indispensable to everyday life. A Fraunhofer Institute has developed software that makes the production of non-woven products much more efficient and flexible. With the tool FIDYST, it has been possible for the first time to simulate the movement of fibers in turbulent air currents. A real innovation – and the breakthrough in a theory that is over a hundred years old.

Non-woven materials are usually well hidden and are therefore not visible. However, if you are looking for them, you can find them everywhere: as a lining in winter jackets, as a padding in sofas, as a soundproofing mat in cars, as insulation in house walls, as a filter in kitchen exhaust hoods, as a cosmetic pad in bathrooms or as a separating layer in electric cables.


High-tech material non-woven: Project manager Dr. Simone Gramsch has developed the simulation tool FIDYST with her team.

Fraunhofer ITWM

Highly absorbent non-woven can even be found in the diapers of our little children. It is an extremely versatile and high-performance material which is indispensable in our everyday lives. Accordingly, textile manufacturers and mechanical engineers are interested in keeping its production as efficient and flexible as possible.

The Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern has developed special software called the FIDYST tool (Fiber Dynamics Simulation Tool). It simulates the movement of fibers in turbulent air flows. In the production of non-woven materials, the fibers or threads are each stretched with the aid of air and deposited onto a conveyor belt.

Depending on the speed and temperature of the air stream, a non-woven product with the desired structure, density and strength results. One widely used application is random web, in which the individual fibers display a diverse orientation, thereby forming a random web which is simultaneously voluminous and firm.

How precisely the fibers move in the airflow and in which orientation they land on the conveyor belt is computed by the simulation software FIDYST which the researchers have developed. After simulating the airflow, the user only has to enter the material properties of the fibers in the software.

The software then simulates the dynamic behavior of thousands of fibers. Even fiber mixtures can be simulated with the software. The result can be visualized in a three-dimensional representation.

Equipped with this data, the manufacturer can then, for example, improve the air flow in a targeted manner. This results in a non-woven fabric with the desired specification while at the same time reducing energy and raw material consumption. The software simulation can calculate that by changing the configuration of the machine, fewer fibers are needed to produce a non-woven fabric with the desired structure and strength.

The Fraunhofer tool not only benefits the textile manufacturers who want to precisely configure their machines for every desired non-woven product. "Mechanical engineers can also use it to create machines that are as efficient and flexible as possible," explains Dr. Simone Gramsch, FIDYST Project Manager at ITWM.

Despite the complex computing operations, FIDYST does not rely on expensive, high-performance computers or data centers; the tool is content with standard PCs of the upper performance class and runs on both Windows and Linux.

Unique feature of Fraunhofer

After the calculation, the data can be exported in the "EnSight Gold Case" format and then visualized and analyzed. The format is standard in applications that deal with the visualization and analysis of flow dynamics of all kinds, such as in aircraft or automotive engineering, but also in sports or medicine.

Behind FIDYST is a real world premier. For the first time, it has been possible to precisely simulate and predict fiber dynamics in air currents. "The development is the result of several years of research as well as a few doctoral theses. It has been worth it, though; with FIDYST, we have a unique feature," says project manager Simone Gramsch.

The ITWM licenses the software to mechanical engineers or textile manufacturers. "If necessary, we also offer FIDYST as a service; then, all the simulations are executed on our computers according to the specifications of the customer," says Gramsch. This is useful when it comes to particularly complex and, therefore, computer-intensive projects.

Mathematics lovers might be interested in the topic for another reason. More than 100 years ago, the French mathematicians Eugène and François Cosserat worked on equations to describe the behavior of elastic materials. The theory of Cosserat-Rods, named after them, ultimately formed the basis for the Fraunhofer researchers.

The Fraunhofer researchers will present a demo of FIDYST at the INDEX non-woven trade fair in Geneva (April 4 - 7, 2017).

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2017/march/simulation-tool-for-...

Ilka Blauth | Fraunhofer Institute for Industrial Mathematics ITWM

More articles from Trade Fair News:

nachricht Medica 2018: Mobile motion feedback to help patients reduce relieving postures when walking
07.11.2018 | Technische Universität Kaiserslautern

nachricht Medica 2018: Control with your feet - computer game to help prevent thrombosis
05.11.2018 | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>