Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Light for New 3D Printing Process

30.08.2017

Premier at formnext: Additive Manufacturing of Copper Materials Using Selective Laser Melting with Green Light

An innovation in the field of additive manufacturing will make its debut from November 14–17 at this year’s formnext in Frankfurt, Germany: the Fraunhofer Institute for Laser Technology ILT in Aachen will be presenting a new approach for selective laser melting of copper materials. In the future, it should offer users the first cost-effective method for 3D printing components made of pure and highly conductive copper.


Picture 1: Exposure of a single layer in a SLM process with green laser light to manufacture an internally cooled coil for inductive heat treatment.

© Fraunhofer ILT, Aachen, Germany


Picture 2: “SLM in green”: the new process should allow 3D printing of pure copper components.

© Fraunhofer ILT, Aachen, Germany.

Selective Laser Melting (SLM), also known as Laser Beam Melting (LBM) or Laser-Powder Bed Fusion (L-PBF), has already proven itself as a powder-bed-based additive manufacturing process in several sectors, such as medical technology, turbo machinery manufacturing, aerospace and automotive engineering.

At present, it is primarily used to process steels, titanium and aluminum alloys, as well as nickel and cobalt alloys. Fraunhofer ILT researchers in Aachen now want to further develop SLM as part of a research project funded by AiF German Federation of Industrial Research Associations.

Their goal is to make it more suitable for the additive manufacturing of components made of copper alloys and pure copper; the latter is an attractive option for end users, as it is more electrically and thermally conductive than copper alloys. Therefore, a specially developed laser beam source that operates with green rather than infrared light will be designed at the Fraunhofer ILT by the end of 2017.

SLM Currently Suited only for Copper Alloys

“Depending on surface properties, pure copper reflects up to 90 percent of laser radiation in conventionally used wavelengths of 1µm,” explains Daniel Heussen, research fellow in the Rapid Manufacturing group.

As a result, only a small portion of the laser energy is deposited in the material and, thus, is available for the melting process. The reflected radiation can also damage the components of the system. In addition, the absorptivity of the material for the infrared light rises rapidly as the material transitions from a solid to liquid state, thus triggering an unstable and intermittent remelting process.

Using green laser light with a wavelength of 515 nm the absorptivity of pure copper is much higher. This means that less laser power output is needed for a stable process. Furthermore, the laser beam can be focused more precisely, allowing it to manufacture far more delicate components using the new SLM process. According to Heussen: “We are hoping for a more homogeneous melt pool dynamics so that we can build components with high material density and achieve other positive effects, such as a higher detail resolution.”

Taking Charge: Construction of a Green SLM Laser

With no such “green” laser source on the market meeting the boundary conditions of the SLM process, the department for laser beam source development at Fraunhofer ILT is building its own in a project they call “SLM in green.” Their aim is to create a high-quality laser for single-mode operation that functions with a maximum output of 400 watts in continuous service (cw) with green wavelength (515 nm). A “SLM in green” laboratory setup is expected to be ready by the end of 2017. Thereafter, the Fraunhofer ILT will further develop its processes as part of the research project funded by the AiF.

The primary future goal is to create a reliable process with which industrial users can 3D print complex geometries of pure copper with hollow structures and undercuts. The process can be used for highly efficient heat exchangers and heat sinks or for the production of delicate, complex electrical components in small batches. Heussen explains: “Inductors for inductive heat treatment in industrial production are excellent showcases for additive manufacturing. They are mostly produced in small numbers with a high level of complexity and a wide range of different variants.”

SLM in Green: 3D Printing of Metal Jewelry

In the field of jewelry design, “SLM in green” could offer a far more efficient and reproducible process for manufacturing complex structures than conventional techniques. Compared to other additive methods such as electron beam melting (EBM), the scientists are hoping for a notably higher detail resolution as well as greater cost efficiency in production. The green laser should be suitable not just for copper, but also non-ferrous and precious metals in the jewelry industry. “However, before we achieve that, we still need to overcome a few hurdles in process and system development and gain a deeper process understanding for the use of the new wavelength,” Heussen says. “This is currently the goal of the publicly funded project, which will run until mid-2019.”

Fraunhofer ILT will show a model and initial process videos to present its new research topic to interested parties at formnext: hall 3.0, stand F50.

Contact

M. Sc. Daniel Heußen
Rapid Manufacturing Group
Telephone +49 241 8906-8362
daniel.heussen@ilt.fraunhofer.de

Dr.-Ing. Wilhelm Meiners
Group Manager Rapid Manufacturing
Telephone +49 241 8906-301
wilhelm.meiners@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht Medica 2019: Arteriosclerosis - new technologies help to find proper catheters and location of vasoconstriction
11.11.2019 | Technische Universität Kaiserslautern

nachricht Laser versus weeds: LZH shows Farming 4.0 at the Agritechnica
08.11.2019 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

How the Zika virus can spread

11.11.2019 | Life Sciences

Researchers find new potential approach to type 2 diabetes treatment

11.11.2019 | Health and Medicine

Medica 2019: Arteriosclerosis - new technologies help to find proper catheters and location of vasoconstriction

11.11.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>