Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IVV Dresden presents new systems for improving process efficiency at interpack 2017

07.03.2017

The Fraunhofer IVV Dresden will present two new systems for efficient process management at interpack 2017 from 4-10 May 2017 in Düsseldorf on the stand of the VDMA (Hall 5, Stand J38): An innovative mobile device for cleaning processing machinery and a self-learning assistance system to help remedy machine faults.

Versatile and mobile – the new device for cleaning processing machinery


Two variants of the Mobile Cleaning Device: self-driven or on conveyor belt

Fraunhofer IVV Dresden

A new mobile device has been developed by the Fraunhofer IVV Dresden to facilitate the cleaning of processing machinery. The showcase "Mobile Cleaning Device" (MCD) brings together the benefits of traditional automated cleaning systems and the versatility of manual cleaning.

The MCD has an optical sensor system for dirt detection and adaptive cleaning. What areas are dirty and need cleaning? When is the cleaning finished? Was it successful? In the future these questions will be able to be answered using inline sensor systems.

The virtual twin of the MCD comprises an adaptive model of the cleaning process. Combining this with cognitive control concepts and the sensor system for dirt detection allows for the first time adaptive cleaning, namely cleaning adapted to the hygienic state of the machinery. The flexibility of the system is also evident in the drive concept.

Movement between machine modules can take place via an own drive unit or by utilizing existing transport systems such as conveyor belts. In contrast to standard cleaning systems, the MCD is not installed in a dedicated way in a machine, rather it can be used in a versatile way to clean several machines. Separately driven nozzles are available for foam and spray cleaning. Besides the cleaning of whole machines, the targeted cleaning of parts of a machine is also possible.

Self-learning assistance system improves machine efficiency

The Fraunhofer IVV Dresden is actively developing self-learning assistance systems for processing machinery and will present the first concepts at interpack 2017. The decisive factor for starting the development work was recognition that even the most advanced production lines are prone to often short faults/stoppages every five minutes on average.

Processes and machinery are becoming ever more complex. Many production line operators are thus unable to remedy faults at their source, and so only manage to alleviate the short-term effects. Even highly advanced sensor systems are not always able to prevent faults, for example those caused by fluctuating product properties.

The most important source of knowledge for remedying machine faults is the knowledge of experienced, qualified machine operators. In order for this knowledge to be passed down to less experienced personnel, the Fraunhofer IVV Dresden is pursuing various concepts for providing operators with information about fault elimination relevant for the prevailing conditions.

These concepts have now been brought together in SAM, the self-learning assistance system for machines, which helps operators remedy faults via a quasi navigation system. A foundation for this is anomaly detection in patterns of sensor signal based on the techniques of data mining and machine learning. Future steps will develop a cooperative dialog system. This will allow the assistance system to learn directly from the operator and together propose a problem-solving strategy, without the SAM itself actively engaging in the production process.

Presse Institute | idw - Informationsdienst Wissenschaft
Further information:
https://www.ivv.fraunhofer.de/

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Bacteria loop-the-loop

27.02.2020 | Life Sciences

Project on microorganisms: Saci, the bio-factory

27.02.2020 | Life Sciences

New method converts carbon dioxide to methane at low temperatures

27.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>