Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CeBIT 2017: Analysis software for neural networks – Watching computers think

13.03.2017

Neural networks are commonly used today to analyze complex data – for instance to find clues to illnesses in genetic information. Ultimately, though, no one knows how these networks actually work exactly. That is why Fraunhofer researchers developed software that enables them to look into these black boxes and analyze how they function. The researchers will present their software at CeBIT in Hannover from March 20 to 24, 2017 (Hall 6, Booth B 36).

Sorting photos on the computer used to be a tedious job. Today, you simply click on face recognition and instantly get a selection of photos of your daughter or son. Computers have gotten very good at analyzing large volumes of data and searching for certain structures, such as faces in images. This is made possible by neural networks, which have developed into an established and sophisticated IT analysis method.


Fraunhofer HHI’s analysis software uses algorithms to visualize complex learning processes (schematic diagram).

© Fraunhofer HHI

The problem is that it isn’t just researchers who currently don’t know exactly how neural networks function step by step, or why they reach one result or another. Neural networks are, in a sense, black boxes – computer programs that people feed values into and that reliably return results. If you want to teach a neural network, for instance, to recognize cats, then you instruct the system by feeding it thousands of cat pictures. Just like a small child that slowly learns to distinguish cats from dogs, the neural network, too, learns automatically.

“In many cases, though, researchers are less interested in the result and far more interested in what the neural network actually does – how it reaches decisions,” says Dr. Wojciech Samek, head of the Machine Learning Group at Fraunhofer Heinrich Hertz Institute HHI in Berlin. So Samek and his team, in collaboration with colleagues from TU Berlin (Prof. Dr. Klaus-Robert Müller), developed a method that makes it possible to watch a neural network think.

Machine learning enables customized cancer Treatments

This is important, for instance, in detecting diseases. We already have the capability today to feed patients’ genetic data into computers – or neural networks – which then analyze the probability of a patient having a certain genetic disorder. “But it would be much more interesting to know precisely which characteristics the program bases its decisions on,” says Samek. It could be certain genetic defects the patient has – and these, in turn, could be a possible target for a cancer treatment that is tailored to individual patients.

Neural networks in reverse

The researchers’ method allows them to watch the work of the neural networks in reverse: they work through the program backwards, starting from the result. “We can see exactly where a certain group of neurons made a certain decision, and how strongly this decision impacted the result,” says Samek. The researchers have already impressively demonstrated – multiple times – that the method works. For instance, they compared two programs that are publicly available on the Internet and that are both capable of recognizing horses in images. The result was surprising. The first program actually recognized the horses’ bodies. The second one, however, focused on the copyright symbols on the photos, which pointed to forums for horse lovers, or riding and breeding associations, enabling the program to achieve a high success rate even though it had never learned what horses look like.

Applications in big data

“So you can see how important it is to understand exactly how such a network functions,” says Samek. This knowledge is also of particular interest to industry. “It is conceivable, for instance, that the operating data of a complex production plant could be analyzed to deduce which parameters impact product quality or cause it to fluctuate,” he says. The invention is also interesting for many other applications that involve the neural analysis of large or complex data volumes. “In another experiment, we were able to show which parameters a network uses to decide whether a face appears young or old.”

According to Samek, for a long time banks have even been using neural networks to analyze bank customers’ creditworthiness. To do this, large volumes of customer data are collected and evaluated by a neural network. “If we knew how the network reaches its decision, we could reduce the data volume right from the start by selecting the relevant parameters,” he says. This would certainly be in the customers’ interests, too. At the CeBIT trade fair in Hannover from March 20 to 24, 2017, Samek’s team of researchers will demonstrate how they use their software to analyze the black boxes of neural networks – and how these networks can deduce a person’s age or sex from their face, or recognize animals.

Weitere Informationen:

https://www.hhi.fraunhofer.de/en/press-media/press-releases.html

Anne Rommel | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>