Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CeBIT 2017: Analysis software for neural networks – Watching computers think

13.03.2017

Neural networks are commonly used today to analyze complex data – for instance to find clues to illnesses in genetic information. Ultimately, though, no one knows how these networks actually work exactly. That is why Fraunhofer researchers developed software that enables them to look into these black boxes and analyze how they function. The researchers will present their software at CeBIT in Hannover from March 20 to 24, 2017 (Hall 6, Booth B 36).

Sorting photos on the computer used to be a tedious job. Today, you simply click on face recognition and instantly get a selection of photos of your daughter or son. Computers have gotten very good at analyzing large volumes of data and searching for certain structures, such as faces in images. This is made possible by neural networks, which have developed into an established and sophisticated IT analysis method.


Fraunhofer HHI’s analysis software uses algorithms to visualize complex learning processes (schematic diagram).

© Fraunhofer HHI

The problem is that it isn’t just researchers who currently don’t know exactly how neural networks function step by step, or why they reach one result or another. Neural networks are, in a sense, black boxes – computer programs that people feed values into and that reliably return results. If you want to teach a neural network, for instance, to recognize cats, then you instruct the system by feeding it thousands of cat pictures. Just like a small child that slowly learns to distinguish cats from dogs, the neural network, too, learns automatically.

“In many cases, though, researchers are less interested in the result and far more interested in what the neural network actually does – how it reaches decisions,” says Dr. Wojciech Samek, head of the Machine Learning Group at Fraunhofer Heinrich Hertz Institute HHI in Berlin. So Samek and his team, in collaboration with colleagues from TU Berlin (Prof. Dr. Klaus-Robert Müller), developed a method that makes it possible to watch a neural network think.

Machine learning enables customized cancer Treatments

This is important, for instance, in detecting diseases. We already have the capability today to feed patients’ genetic data into computers – or neural networks – which then analyze the probability of a patient having a certain genetic disorder. “But it would be much more interesting to know precisely which characteristics the program bases its decisions on,” says Samek. It could be certain genetic defects the patient has – and these, in turn, could be a possible target for a cancer treatment that is tailored to individual patients.

Neural networks in reverse

The researchers’ method allows them to watch the work of the neural networks in reverse: they work through the program backwards, starting from the result. “We can see exactly where a certain group of neurons made a certain decision, and how strongly this decision impacted the result,” says Samek. The researchers have already impressively demonstrated – multiple times – that the method works. For instance, they compared two programs that are publicly available on the Internet and that are both capable of recognizing horses in images. The result was surprising. The first program actually recognized the horses’ bodies. The second one, however, focused on the copyright symbols on the photos, which pointed to forums for horse lovers, or riding and breeding associations, enabling the program to achieve a high success rate even though it had never learned what horses look like.

Applications in big data

“So you can see how important it is to understand exactly how such a network functions,” says Samek. This knowledge is also of particular interest to industry. “It is conceivable, for instance, that the operating data of a complex production plant could be analyzed to deduce which parameters impact product quality or cause it to fluctuate,” he says. The invention is also interesting for many other applications that involve the neural analysis of large or complex data volumes. “In another experiment, we were able to show which parameters a network uses to decide whether a face appears young or old.”

According to Samek, for a long time banks have even been using neural networks to analyze bank customers’ creditworthiness. To do this, large volumes of customer data are collected and evaluated by a neural network. “If we knew how the network reaches its decision, we could reduce the data volume right from the start by selecting the relevant parameters,” he says. This would certainly be in the customers’ interests, too. At the CeBIT trade fair in Hannover from March 20 to 24, 2017, Samek’s team of researchers will demonstrate how they use their software to analyze the black boxes of neural networks – and how these networks can deduce a person’s age or sex from their face, or recognize animals.

Weitere Informationen:

https://www.hhi.fraunhofer.de/en/press-media/press-releases.html

Anne Rommel | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>