Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mimicking humpback whale flippers may improve airplane wing design

12.05.2004


Wind tunnel tests of scale-model humpback whale flippers have revealed that the scalloped, bumpy flipper is a more efficient wing design than is currently used by the aeronautics industry on airplanes. The tests show that bump-ridged flippers do not stall as quickly and produce more lift and less drag than comparably sized sleek flippers.



The tests were reported by biomechanicist Frank Fish of West Chester University, Penn., fluid dynamics engineer Laurens Howle of the Pratt School of Engineering at Duke University and David Miklosovic and Mark Murray at the U.S. Naval Academy. They reported their findings in the May 2004 issue of Physics of Fluids , published in advance online on March 15, 2004.

In their study, the team first created two approximately 22-inch-tall scale models of humpback pectoral flippers -- one with the characteristic bumps, called tubercles, and one without. The models were machined from thick, clear polycarbonate at Duke University. Testing was conducted in a low speed closed-circuit wind tunnel at the U.S. Naval Academy in Annapolis, Md.


The sleek flipper performance was similar to a typical airplane wing. But the tubercle flipper exhibited nearly 8 percent better lift properties, and withstood stall at a 40 percent steeper wind angle. The team was particularly surprised to discover that the flipper with tubercles produced as much as 32 percent lower drag than the sleek flipper.

"The simultaneous achievement of increased lift and reduced drag results in an increase in aerodynamic efficiency," Howle explains.

This new understanding of humpback whale flipper aerodynamics has implications for airplane wing and underwater vehicle design. Increased lift (the upward force on an airplane wing) at higher wind angles affects how easily airplanes take off, and helps pilots slow down during landing.

Improved resistance to stall would add a new margin of safety to aircraft flight and also make planes more maneuverable. Drag -- the rearward force on an airplane wing -- affects how much fuel the airplane must consume during flight. Stall occurs when the air no longer flows smoothly over the top of the wing but separates from the top of the wing before reaching the trailing edge. When an airplane wing stalls, it dramatically loses lift while incurring an increase in drag.

As whales move through the water, the tubercles disrupt the line of pressure against the leading edge of the flippers. The row of tubercles sheers the flow of water and redirects it into the scalloped valley between each tubercle, causing swirling vortices that roll up and over the flipper to actually enhance lift properties.

"The swirling vortices inject momentum into the flow," said Howle. "This injection of momentum keeps the flow attached to the upper surface of the wing and delays stall to higher wind angles."

"This discovery has potential applications not only to airplane wings but also on the tips of helicopter rotors, airplane propellers and ship rudders," said Howle.

The purpose of the tubercles on the leading edge of humpback whale flippers has been the source of speculation for some time, said Fish. "The idea they improved flipper aerodynamics was so counter to our current doctrine of fluid dynamics, no one had ever analyzed them," he said.

Humpback whales maneuver in the water with surprising agility for 44-foot animals, particularly when they are hunting for food. By exhaling air underwater as they turn in a circle, the whales create a cylindrical wall of bubbles that herd small fish inside. Then they barrel up through the middle of the "bubble net," mouth open wide, to scoop up their prey.

According to Fish, the scalloped hammerhead shark is the only other marine animal with a similar aerodynamic design. The expanded hammerhead shark head may act like a wing.

The trick now is to figure out how to incorporate the advantage of the tubercle flipper into manmade designs, said Fish.

The research team now plans to perform a systematic engineering investigation of the role of scalloped leading edges on lift increase, drag reduction and stall delay.

Deborah Hill | EurekAlert!
Further information:
http://www.dukenews.duke.edu/news/design_0504.html

More articles from Process Engineering:

nachricht Design treatment of advanced metals producing better sculpting
08.03.2019 | Purdue University

nachricht Laser Processes for Multi-Functional Composites
18.02.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>