Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titania nanotube hydrogen sensors clean themselves

25.03.2004


Self-cleaning hydrogen sensors may soon join the ranks of self-cleaning ovens, self-cleaning windows and self-cleaning public toilets, according to Penn State researchers.


FESEM images of the titania nanotube array prepared using an anodization potential of 10 V, top view
Credit: Penn State, Craig Grimes



"The photocatalytic properties of titania nanotubes are so large -- a factor of 100 times greater than any other form of titania -- that sensor contaminants are efficiently removed with exposure to ultraviolet light, so that the sensors effectively recover or retain their original hydrogen sensitivity in real world application," says Dr. Craig A. Grimes, associate professor of electrical engineering and materials science and engineering.

Previous research showed that titania nanotubes at room temperature have a completely reversible electrical resistance change of about 100,000,000 percent when exposed to 1000 parts per million of hydrogen. These nanotube sensors can monitor hydrogen levels from parts per billion to about 4 percent, the explosive limit.


Hydrogen sensors are widely used in the chemical, petroleum and semiconductor industries. They are also used as diagnostic tools to monitor certain types of bacterial infections.

"In a bakery, for example, sensors sniff hydrogen and measure temperature to determine when goods are done," says Grimes. "Hydrogen sensors are also used in combustion systems of automobiles to monitor pollution."

However, the environments where people use hydrogen sensors, such as petroleum plants, can get very dirty. In addition to Grimes, the researchers include: Gopal K. Mor and Oomman K. Varghese, postdoctoral fellows; Michael V. Pishko, associate professor of chemical engineering, and Maria A. Carvalho, graduate student in chemical engineering, investigated the photocatalytic oxidation of contaminants on the hydrogen sensors. They reported their results in recent issues of the Journal of Materials Research and Sensor Letters.

The hydrogen sensors are titania nanotubes coated with a discontinuous layer of palladium. The researchers tried to contaminate the sensors with a variety of substances including stearic acid – a fatty acid, cigarette smoke and different types of oil. While all these contaminants were self-cleanable via photocatalytic properties of the nanotubes, most experiments focused on recovery of the sensor after immersion in different types of motor oils, viewed as the ultimate contamination by the investigators.

The researchers exposed the hydrogen sensors to 1000 parts per million of hydrogen, at room temperature, finding in their initial sensor designs a 175,000 percent change in resistance. The sensors were then coated with a layer of motor oil several tens of microns thick, that completely extinguished their hydrogen sensitivities.

In an air atmosphere, the researchers exposed the sensor to ultraviolet light for 10 hours. After one hour, the sensors had recovered a large portion of their sensitivity, and after 10 hours the sensors, compared to their uncontaminated selves, had almost fully regained their hydrogen sensitivities.

"The recovered sensor has a 1000 part per million hydrogen normalized resistance value of approximately .0005 percent, compared with the .0006 percent value of the sensor prior to contamination," says Grimes.

The sensors could not recover from all contaminants, for example a coating of the spray-on oil WD-40, as these contaminants contain salts, which degrade the photocatalytic properties of the nanotubes.

"By doping the titania nanotubes with trace amounts of different metals such as tin, gold, silver, copper, niobium and others, a wide variety of chemical sensors can be made," says Grimes. "This doping does not alter the photocatalytic properties of the titania nanotubes."

Sensors in uncontrolled locations – in the real world – become contaminated by a variety of substances including volatile organic vapors, carbon soot and oil vapors as well as dust and pollen. A self-cleaning function, capable of oxidizing contaminants, would extend sensor lifetime and minimize sensor errors.

A’ndrea Elyse Messer | Penn State
Further information:
http://www.psu.edu/ur/2004/selfcleaningsensors.html

More articles from Process Engineering:

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Flying High with VCSEL Heating
04.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>