Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart blending technique could change way plastics made

23.09.2003


A new "smart blending" process developed by Clemson University researchers could change the way plastics are made and improve their performance. Early results published in August’s Polymer Engineering and Science have already drawn interest from European and United States plastics manufacturers.



Dave Zumbrunnen, who heads the Clemson research team, said smart blending could bring plastics production into the 21st century. "Most people would be surprised to learn that many plastics are not optimized for their intended use due to limitations of existing manufacturing equipment," he said. With a smart-blending machine, however, engineers can optimize the material for maximum effectiveness with only a few strokes on a computer keyboard.

Many plastics are mixtures of two or more plastics and additives. Smart blending arranges these plastics into functional internal shapes as small as 1/10,0000th the diameter of a hair.


That’s important because it’s those small-scale structures that determine the attributes, or properties, of the plastic or composite. The end result? Plastics that are tougher, electrically conductive, porous – whatever is needed for the particular end-product, but without expensive trial and error.

"Smart blending technology offers unprecedented control of internal structure development, said Zumbrunnen. He developed the process along with faculty and student researchers from Clemson’s Center for Advanced Engineering Fibers and Films.

Immediate applications could include improved food packaging films, personal hygiene products, light-interactive plastics and toughened plastics for automotive uses.

Smart blending could also be used to produce patterns for countertops and even better tasting breakfast cereals.

The Dow Chemical Co. is funding a smart blending study through the fibers and films center. "We are looking forward to the results and the further development of this technology," said Craig Dryzga, senior R&D leader in Dow’s Fabricated Products Department. Dow is headquartered in Midland, Mich.

Zumbrunnen’s research sponsors include industry representatives such as Dow, as well as the National Science Foundation, Defense Advanced Research Projects Agency and the National Textile Center.

Equipment manufacturers are interested in commercializing the technology. Zumbrunnen predicted that the first wave of smart-blended plastics could be on the market within a few years.

Zumbrunnen’s research is based on the work of Hassan Aref, who developed what’s known as the theory of chaotic advection. In a seminal 1980s paper, Aref showed that particles in a fluid can move chaotically in response to simple agitations. The chaotic motions cause fluidic regions to become stretched and folded, forming the layers on which Zumbrunnen has based his work.

Aref, now dean of Virginia Tech’s College of Engineering, has called Zumbrunnen’s work "attractive and ingenious."

Zumbrunnen’s work is a pivotal research initiative in Clemson’s fibers and films center. The National Science Foundation established the center as one of the nation’s elite Engineering Research Centers in 1998. It’s the only national Engineering Research Center to target fiber and film research.

"This technique could change the way we produce all polymer products – fibers, films and even injection-molded products," said the center’s director Dan Edie.

Zumbrunnen, a recipient of the Presidential Faculty Fellow Award from The White House and a recent participant in the National Academy of Engineering’s prestigious Frontiers of Engineering symposium, is Clemson’s Warren H. Owen-Duke Energy Professor of Mechanical Engineering.

Sandy Dees | Sandy Dees
Further information:
http://www.clemson.edu/

More articles from Process Engineering:

nachricht Decontaminating pesticide-polluted water using engineered nanomaterial and sunlight
16.01.2020 | Institut national de la recherche scientifique - INRS

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>