Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vehicle poised to advance exploration on Mars

02.05.2003


Pioneering research carried out by Kingston University is helping to pave the way for a manned mission to Mars. A project team based at the University’s School of Engineering has developed a robotic micro-rover to travel the Martian surface to find out whether humans could live in the Red Planet’s hostile environment.



Named Endurance, the small self-propelled vehicle will be powered by the sun’s rays and equipped to drill beneath the surface to find out if life exists on Mars in the form of microbes. Sponsored by the European Space Agency, the research project is designed to improve the mobility and reliability of technology being used to investigate the planet.

Project leader Dr Alex Ellery said that, even though an actual manned mission to Mars was still many years away, the new vehicle could prove crucial in helping to determine the type of survival equipment needed in the future.


The biggest challenge Dr Ellery and his team have faced was working out how to build a vehicle that could travel across the hostile and rocky environment without tipping over. The planet’s gravity is about one third that on earth, which also makes mobile exploration difficult.

A vehicle on wheels would not provide enough control and stability, so the team has opted to use two single-loop tracks, similar to those on a military tank but with no bogey wheels and no separate links. “The tracks will be made of shape memory alloy. When distorted in any way, it immediately springs back to its original shape. Its other great advantage is that it withstands deformation as it goes over rocks while maintaining stability,” Dr Ellery said. Each alloy track will be looped around drive wheels and shock absorbers at the ends of the Endurance’s chassis. As a result, the drive wheels will be raised above the surface by a few centimetres, keeping the vehicle upright and out of harm’s way.

“The micro-rover is being developed to enable scientists to penetrate beneath the surface in search of life using a drill,” Dr Ellery said. “The surface of Mars is saturated with hydrogen peroxide - a strong and colourless substance that corrodes organic material. If there are signs of life, they will lie beneath this corrosive layer.”

A prototype of Endurance, packed with drilling and sample analysing equipment, is likely to be built this summer by defence company Qinetiq and German research agency DLR. It will weigh only 30kg to allow it to be transported and landed safely on the planet. If all goes according to plan, the Endurance vehicle will be loaded on to a rocket for the six-month journey to Mars either in 2009 or 2011.

John Kendall | alfa
Further information:
http://www.kingston.ac.uk

More articles from Process Engineering:

nachricht Clean without scrubbing and using chemicals
28.05.2020 | Technische Universität Dresden

nachricht Decontaminating pesticide-polluted water using engineered nanomaterial and sunlight
16.01.2020 | Institut national de la recherche scientifique - INRS

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Joined nano-triangles pave the way to magnetic carbon materials

02.06.2020 | Materials Sciences

DC smart grids for production halls

02.06.2020 | Power and Electrical Engineering

Selectively Reactivating Nerve Cells to Retrieve a Memory

02.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>