Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Reveals Structure of Films With High Resolution

30.10.2002


Scientists have developed and tested a new imaging technique that reveals the atomic structure of thin films with unprecedented resolution. For the first time, the technique has shown very precisely how the atoms of the first layers of a film rearrange under the action of the substrate on which the film is grown. The results of the study are reported as the cover story of the October issue of Nature Materials.



Above: Electron density map of one of the layers of the gadolinium oxide film close to the gallium arsenide substrate (top) and a layer in the substrate (bottom), by using the COBRA imaging technique. A comparison of both maps shows that the gadolinium atoms (around the yellow-red peaks) rearrange so that the maps mimic each other



“This technique directly provides a very precise image of atomic positions within a film and at the interface between a film and a substrate,” says Ron Pindak, a physicist at the National Synchrotron Light Source (NSLS) at the U.S. Department of Energy’s Brookhaven National Laboratory and one of the authors of the study. “With the current growing interest in the study of nanomaterials, which are the size of a few atoms, this technique will probably be key in devising such materials and understanding their properties.”

Thin films are currently used in many technologies, including electronic chips, coatings, and magnetic recording heads. To improve the properties of these materials and create even thinner structures – such as smaller electronic chips – scientists are now trying to understand how the films interact with the substrate on which they are grown.


“When you build a film on a substrate, the positions of the atoms of the film are slightly shifted, and some of these shifts can be very small,” says Roy Clarke, a physicist at the University of Michigan in Ann Arbor and another author of the study. “So it is important to be able to explain how these films behave at the atomic level.”

By building upon traditional x-ray diffraction, the newly devised technique provides such information. In this technique, x-rays are projected onto the film and the substrate pattern, which is then used to determine the positions of the atoms inside the film. The diffraction pattern of thin films is composed of ridge-like features called “Bragg rods,” hence the name of the technique: coherent Bragg rod analysis (COBRA).

The COBRA technique determines two key properties of the diffracted x-ray waves: their intensity and their phase, which describes the shift in position between the incident and diffracted x-ray waves. Though the amplitude is easily determined from the diffraction pattern, the phase is usually more difficult to determine, which is just what COBRA does.

“Key to the COBRA technique is a new approach to determining the phase of the diffracted x-ray waves,” says Yizhak Yacoby, physicist at the Hebrew University in Jerusalem and lead author of the study. “Unlike traditional x-ray diffraction techniques, COBRA does not rely on a priori guesses about the structure of the film and the substrate, and we do not need to prepare the sample in a special way – as with a transmission electron microscope.”

Yacoby, who started developing the technique four years ago, first applied it to known structures by using x-rays produced at the NSLS at Brookhaven, which allowed him to refine the technique. In their recent study, Yacoby and his collaborators applied the technique to a film made of gadolinium oxide grown on a gallium arsenide substrate using brighter x-rays at the Advanced Photon Source (APS) at Argonne National Laboratory in Illinois. Key to the successful data collection were two APS beam lines that Clarke and Edward Stern, a physicist at the University of Washington in Seattle, perfected for the past five years.

The researchers made unexpected observations. They noticed that two thirds of the gadolinium atoms in the first few layers of the film adjust to match the positions of the atoms in the substrate. The researchers also discovered that the structure of the first layers of the film mimics very closely the substrate’s structure, while the atoms in the layers farther away from the substrate are arranged more like those in the bulk form of gadolinium oxide. The layer stacking of the film also appeared to mimic very closely the substrate’s structure.

The scientists now intend to investigate the properties of various other films. Yacoby, who has already submitted patents for the COBRA technique, is confident that it will have many applications in the design of electronic devices based on thin films, the self-assembly of layers made of metal oxides used in catalysis, and the study of films made of large organic molecules, such as proteins.

This work was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields.

For more information, contact:
Karen McNulty Walsh, 631 344-8350, or
Mona S. Rowe, 631 344-5056
Writer: Patrice Pages

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/
http://www.bnl.gov/bnlweb/pubaf/pr/2002/bnlpr102902.htm

More articles from Process Engineering:

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Flying High with VCSEL Heating
04.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>