Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where did the antimatter go? Neutrinos shed promising new light

16.04.2020

We live in a world of matter - because matter overtook antimatter, though they were both created in equal amounts by the Big Bang when our universe began. As featured on the cover of Nature on 16 April 2020, neutrinos and the associated antimatter particles, antineutrinos, are reported to have a high likelihood of differing behaviour that offers a promising path to explaining the asymmetry between matter and antimatter.

These observations may explain this mysterious antimatter disappearance. They come from the T2K experiment conducted in Japan and in which three French laboratories are involved, affiliated with the CNRS, École Polytechnique - Institut Polytechnique de Paris, Sorbonne Université and the CEA.


Detection of an electron neutrino (on the left) and an electron antineutrino (on the right) in the Super-Kamiokande. When an electron neutrino or antineutrino interacts with water, an electron or a positron is produced. They emit a faint ring of light (called Cherenkov light) that is detected by almost 13,000 photodetectors. The colour on the figures shows how photons are detected over time.

Credit: © T2K Collaboration

Usage Restrictions: May only be used with appropriate credit and caption, to report on this research

Physicists have long been convinced, from their experiments, that matter and antimatter were created in equal quantities at the beginning of the universe. When they interact, matter and antimatter particles destroy each other, which should have left the universe empty, containing only energy.

But as we can see from looking around us, matter won out over antimatter. To explain this imbalance, physicists look for asymmetry in how matter and antimatter particles behave, asymmetry that they call violation of the Charge-Parity (CP) symmetry (1).

For decades, scientists have detected symmetry violations between quarks (components of atoms) and their antiparticles. However, this violation is not large enough to explain the disappearance of antimatter in the universe. Another path looks promising: asymmetry between the behaviour of neutrinos and antineutrinos could fill in a large part of the missing answer.

This is what the T2K (2) experiment is researching. It is located in Japan; its French collaborators are the Leprince-Ringuet Laboratory (CNRS/École Polytechnique - Institut Polytechnique de Paris), the Laboratoire de Physique Nucléaire and des Hautes Energies (CNRS/Sorbonne Université) and the CEA's Institut de Recherche sur les Lois Fondamentales de l'Univers.

Neutrinos are extremely light elementary particles. They pass through materials, are very difficult to detect, and are even harder to study precisely. Three kinds of neutrinos - or flavours - exist: the electron, muon and tau neutrinos. The behaviour that could differ for neutrinos and antineutrinos is oscillation, the capacity of these particles to change flavour as they propagate (3).

The T2K experiment uses alternating beams of muon neutrinos and muon antineutrinos, produced by a particle accelerator at the J-PARC research centre, on Japan's east coast. Towards its west coast, a small fraction of the neutrino (or antineutrino) beams sent by J-PARC are detected using the light pattern that they leave in the 50,000 tonnes of water in the Super-Kamiokande detector, set up 1,000 metres deep in a former mine.

During their 295 km journey through rock (taking a fraction of a second at the speed of light), some of the muon neutrinos (or antineutrinos) oscillated and took on another flavour, becoming electron neutrinos.

By counting the number of particles that reached Super-Kamiokande with a different flavour than the one they were produced with at J-PARC, the T2K collaboration has shown that neutrinos seem to oscillate more often than antineutrinos. The data even point to almost maximum asymmetry (See graph below) between how neutrinos and antineutrinos behave.

These results, the fruit of ten years of data accumulated in the Super-Kamiokande with a total of 90 electronic neutrinos and 15 electronic antineutrinos detected, are not yet statistically large enough to qualify this as a discovery; however it is a strong indication and an important step. The T2K experiment will now continue with higher sensitivity.

A new generation of experiments should multiply data production in the coming years: Hyper-K, the successor to the Super-Kamiokande in Japan, whose construction has just been started, and Dune, being built in the USA, ought to be operational around 2027-2028.

If their new data confirm the preliminary results from T2K, ten years from now neutrinos could provide the answer to why antimatter disappeared in our universe.

###

The T2K experiment was constructed and is operated by an international collaboration of about 500 scientists from 68 institutions in 12 countries (Canada, France, Germany, Italy, Japan, Poland, Russia, Spain, Switzerland, UK, USA and Vietnam). This result is made possible by the efforts of J-PARC to deliver high-quality beam to T2K.

The French laboratories have had major involvement in the construction and use of near detectors (which characterize the beam before the neutrinos have had time to change flavour) and in ancillary experiments conducted at CERN for better understanding the beam. They are very involved in the global analysis of data and are now engaged in the vast program of improvement for near detectors.

The T2K experiment is supported by the Japanese Ministry for Culture, Sports, Science, and Technology (MEXT), and is jointly hosted by the High Energy Accelerator Research Organization (KEK) and the University of Tokyo's Institute for Cosmic Ray Research (ICRR).

Notes:

(1) When particles and antiparticles are exchanged, and we consider the experiment obtained by reflection in a mirror and the results are not the same, that is a violation of CP symmetry.

(2) T2K represents Tokai-to-Kamioka. Tokai and Kamioka are the two Japanese towns that each house one part of the experiment.

(3) This was first observed in the Super-Kamiokande in 2013.

Media Contact

Véronique Etienne
veronique.etienne@cnrs.fr
33-144-965-137

http://www.cnrs.fr 

Véronique Etienne | EurekAlert!
Further information:
http://www.cnrs.fr/en/where-did-antimatter-go-neutrinos-shed-promising-new-light
http://dx.doi.org/10.1038/s41586-020-2177-0

More articles from Physics and Astronomy:

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

nachricht Rock 'n' control
09.07.2020 | University of Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Record efficiency for printed solar cells

09.07.2020 | Power and Electrical Engineering

Rock 'n' control

09.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>