Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF scientist creates most efficient quantum cascade laser ever

18.10.2016

New method makes QCLs easier to manufacture

A team of UCF researchers has produced the most efficient quantum cascade laser ever designed - and done it in a way that makes the lasers easier to manufacture.


Assistant Professor Arkadiy Lyakh of UCF's NanoScience Technology Center has developed the most efficient Quantum Cascade Laser ever.

Credit: University of Central Florida

Quantum cascade lasers, or QCLs, are tiny - smaller than a grain of rice - but they pack a punch. Compared to traditional lasers, QCLs offer higher power output and can be tuned to a wide range of infrared wavelengths. They can also be used at room temperature without the need for bulky cooling systems.

But because they're difficult and costly to produce, QCLs aren't used much outside the Department of Defense.

A University of Central Florida team led by Assistant Professor Arkadiy Lyakh has developed a simpler process for creating such lasers, with comparable performance and better efficiency. The results were published recently in the scientific journal Applied Physics Letters.

"The previous record was achieved using a design that's a little exotic, that's somewhat difficult to reproduce in real life," Lyakh said. "We improved on that record, but what's really important is that we did it in such a way that it's easier to transition this technology to production. From a practical standpoint, it's an important result."

That could lead to greater usage in spectroscopy, such as using the infrared lasers as remote sensors to detect gases and toxins in the atmosphere. Lyakh, who has joint appointments with UCF's NanoScience Technology Center and the College of Optics and Photonics, envisions portable health devices. For instance, a small QCL-embedded device could be plugged into a smartphone and used to diagnose health problems by simply analyzing one's exhaled breath.

"But for a handheld device, it has to be as efficient as possible so it doesn't drain your battery and it won't generate a lot of heat," Lyakh said.

The method that previously produced the highest efficiency called for the QCL atop a substrate made up of more than 1,000 layers, each one barely thicker than a single atom. Each layer was composed of one of five different materials, making production challenging.

The new method developed at UCF uses only two different materials - a simpler design from a production standpoint.

Lyakh came to UCF in September 2015 from Pranalytic, Inc., a California-based tech company, where he led QCL development and production. His research team at UCF included graduate students Matthew Suttinger, Rowel Go, Pedro Figueiredo and Ankesh Todi, and research scientist Hong Hsu.

Media Contact

Mark Schlueb
mark.schlueb@ucf.edu
407-823-0221

 @UCF

http://www.ucf.edu

Mark Schlueb | EurekAlert!

More articles from Physics and Astronomy:

nachricht Physicists create world's smallest engine
22.08.2019 | Trinity College Dublin

nachricht HADES experiment simulates colliding and merging neutron stars Temperatures of 800 billion degrees in the cosmic kitchen
22.08.2019 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Clean air for a sustainable future in Manila

22.08.2019 | Ecology, The Environment and Conservation

Cascading activity in a cortical network

22.08.2019 | Life Sciences

An Ice Age savannah corridor let large mammals spread across Southeast Asia

22.08.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>