Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Future of Ultrafast Solid-State Physics

13.04.2018

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort light pulses in the infrared and visible regions of the spectrum.


Light waves and their electromagnetic fields oscillate at rates on the order of a million billion times per second. In principle then, light can be employed to modulate the behavior of charged particles, such as electrons, in solid-state matter at similar rates.

Photo: Alexander Gelin

Extremely high-energy laser pulses, each lasting for a few femtoseconds, have made spectacular experiments possible, which have in turn yielded revolutionary insights. Above all, the growth in understanding of the interaction between light and electrons opens up entirely new prospects for the future of electronics.

In the journal Review of Modern Physics (10 April 2018), Dr. Stanislav Kruchinin, Prof. Ferenc Krausz and Dr. Vladislav Yakovlev from the Laboratory for Attosecond Physics (which is jointly run by Ludwig-Maximilians-Universität (LMU) and the Max Planck Institute of Quantum Optics (MPQ)) in Munich, provide a timely overview of current research in ultrafast solid-state physics. They describe recent breakthroughs and take a look at what we can expect from the field in the coming years.

The realm of electrons is becoming ever more familiar. One reason why is that researchers have learned to produce and precisely shape ultrashort pulses of light that enable them to probe the behavior of charged particles. A single oscillation of the electromagnetic field associated with such a laser pulse is sufficient to excite electrons in atoms, molecules, and condensed matter.

Dr. Stanislav Kruchinin, Prof. Ferenc Krausz and Dr. Vladislav Yakovlev, who are at the Laboratory for Attosecond Physics, which is affiliated with LMU Munich and MPQ, have written an article on these groundbreaking developments in laser technology and their theoretical basis for the latest edition of the journal Review of Modern Physics. All of the authors are recognized experts in the field of ultrafast physics and the interaction of light and matter.

Interactions between ultrashort laser pulses and electrons take place on timescales ranging from a few femtoseconds to a few hundred attoseconds. A femtosecond is equivalent to one millionth of a billionth of a second, and an attosecond is 1000 times shorter still.

Visible light waves have wavelengths of 400-700 nanometers, such a single oscillation of the associated electromagnetic field lasts for between 2 and 3 femtoseconds. For more than 15 years, laser pulses of this length have been used to probe the motions of electrons in atomic gases. Meanwhile, further advances have led to methods for generating attosecond pulses which make it possible to film the behavior of electrons in real time (Nature 5 August 2010, Vol. 466).

“We now know a good deal about what goes on in the world of electrons, and how these particles behave in response to light,” says Vladislav Yakovlev. “The microcosmos is no longer quite as strange as it once appeared to us.”

Moreover, these unfathomably brief light flashes can do much more than passively tracking the dynamics of electron motions. As Prof. Krausz’s team has shown, such pulses can be utilized to control the behavior of electrons. In 2012, the Munich researchers used highly energetic, ultrashort laser pulses to induce a current in a crystal and to control the direction of electron flow via the electric field of light (Nature 3 January 2013, Vol. 493).

Light waves and their electromagnetic fields oscillate at rates on the order of a million billion times per second. In principle then, light can be employed to modulate the behavior of charged particles, such as electrons, in solid-state matter at similar rates. In the near future, our growing knowledge of electron motions optically modulated at optical frequencies may well lead to new developments in high-speed techniques for the investigation of condensed matter. Furthermore, the use of light to direct electron flows may lead to a new era of optoelectronics, marked by a drastic reduction in switching times and a concomitant increase in the performance of electronic circuits, enabling computations to be carried out at optical frequencies.

“Ultrafast, laser-based technologies give us the chance to develop the technology of the future,” says Vladislav Yakovlev. “Now, we must consider how to make the best use of our insights and expertise.” Yakovlev and his colleagues hope that the use of precisely shaped optical fields to control electron flows will usher in a new era in electronics. Thorsten Naeser

Figure caption:
Light waves and their electromagnetic fields oscillate at rates on the order of a million billion times per second. In principle then, light can be employed to modulate the behavior of charged particles, such as electrons, in solid-state matter at similar rates.

Original publication:
Stanislav Kruchinin, Ferenc Krausz, Vladislav Yakovlev
Colloquium: Strong-field phenomena in periodic systems
Reviews of Modern Physics 90, 021002 (2018); doi.org/10.1103/RevModPhys.90.021002

Contact:

Dr. Vladislav Yakovlev
Laboratory for Attosecond Physics
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 32 905 - 733
E-mail: vladislav.yakovlev@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht CCNY-Yale researchers make shape shifting cell breakthrough
12.12.2018 | City College of New York

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>