Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweating the small stuff

02.05.2018

A membrane with nanoscale pores allows controlled sweat stimulant release, paving the way to measure small samples of sweat in wearable biosensing devices

When people sweat, they unknowingly release a wide range of chemicals that can noninvasively inform clinicians on anything from stress hormone levels to glucose. But it's hard for researchers to glean this information -- unless you sweat a lot. Emerging wearable devices using stimulant gels have provided a way to induce sweat locally on the body. However, sweat can dilute these gels, which degrades their long-term viability.


In vivo testing of membrane technology using iontophoresis.

Credit: Phillip Simmers, Zachary Sonner and Jason Heikenfeld

An international team of researchers recently developed a new membrane that mitigates both issues that arise from direct dermal contact and sweat dilution for sweat biosensors. As discussed in Biomicrofluidics, by AIP Publishing, the membrane performs hundreds of times better than other methods and holds up to repeated use.

"Everyday use of sweat biosensing is on the horizon, but first we need to work out a few problems, including how to obtain useful samples when patients aren't exerting themselves," said Phillip Simmers, an author on the paper. "Controlled dosing is very important to the medical community."

Iontophoretic devices -- which would draw on the team's membrane -- work by applying a small voltage across the skin to guide a charged drug through the epidermis. Most sweat stimulation devices use a stimulant that is dissolved into a hydrogel at high concentrations to make sure the dosing can be maintained.

While stimulants such as carbachol are useful because the body slowly metabolizes them, they cannot specifically target sweat glands and pose potential risk if an additional stimulant enters the body. When the stimulant activates sweat production, the resulting mélange of hydrogel and sweat not only makes it difficult for the stimulant to reach the skin, but also for the biosensor to accurately read the sweat.

"One of the biggest challenges was that when we sweat, we're actively losing analytes to the gel, which is an issue that hasn't been addressed," Simmers said.

Simmers and his team first constructed an in vitro model to determine which commercially available filtration membranes were best suited for limiting the passive diffusion of carbachol. They found that the best membranes had nanoscale pores and retained more than 90 percent of their initial stimulant concentration after 24 hours, while allowing only a minimal amount of sweat to pass through.

The group then ported this technology to dime-sized adhesive patches and tested them on patients. Using bromophenol blue dye and silicone oil that changes color in the presence of sweat, they were able to confirm that the nanoscale pores identified earlier during their in vitro experiments could still deliver controlled dosing that induced the human sweat response, proving that the membrane was effectively isolating the sweat from the stimulant.

Next up, the group hopes to incorporate their findings into a wearable biosensing prototype that they have already developed. Simmers said he hopes the paper's findings will also stoke interest in how to better produce membrane materials for such devices.

###

The article, "Membrane isolation of repeated-use sweat stimulants for mitigating both direct dermal contact and sweat dilution," is authored by P. Simmers, Y. Yuan, Z. Sonner and J. Heikenfeld. The article will appear in Biomicrofluidics May 1, 2018 (DOI: 10.1063/1.5023396). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5023396.

ABOUT THE JOURNAL

Biomicrofluidics publishes research highlighting fundamental physiochemical mechanisms associated with microfluidic and nanofluidic phenomena as well as novel microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. See http://bmf.aip.org.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @AIPPhysicsNews

http://www.aip.org 

Julia Majors | EurekAlert!

More articles from Physics and Astronomy:

nachricht Double layer of graphene helps to control spin currents
18.10.2019 | University of Groningen

nachricht Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling
17.10.2019 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>