Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supermassive black hole model predicts characteristic light signals at cusp of collision

15.02.2018

New study advances multimessenger astrophysics

A new simulation of supermassive black holes--the behemoths at the centers of galaxies--uses a realistic scenario to predict the light signals emitted in the surrounding gas before the masses collide, said Rochester Institute of Technology researchers.


Two supermassive black holes at the center of a large gas disk are on a collision course in a time sequence simulated by RIT scientists. An alternating flow of gas fills and depletes mini disks feeding the black holes, shown above. Characteristic light signals emitted in the gas could mark the location of the invisible masses. (Note: The dot at the center of the image is not part of the simulation.)

Credit: RIT Center for Computational Relativity and Gravitation

The RIT-led study represents the first step toward predicting the approaching merger of supermassive black holes using the two channels of information now available to scientists--the electromagnetic and the gravitational wave spectra--known as multimessenger astrophysics. The findings appear in the paper "Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger," published in the Astrophysical Journal Letters.

"We've performed the first simulation in which an accretion disk around a binary black hole feeds individual accretion disks, or mini-disks, around each black hole in general relativity and magnetohydrodynamics," said Dennis Bowen, lead author and postdoctoral researcher at RIT's Center for Computational Relativity and Gravitation.

Unlike their less massive cousins, first detected in 2016, supermassive black holes are fed by gas disks that surround them like doughnuts. The strong gravitational pull of the black holes that inspiral toward one another heats and disrupts the flow of gas from disk to black hole and emits periodic signals in the visible to X-ray portions of the electromagnetic spectrum.

"We have not yet seen two supermassive black holes get this close," Bowen said. "It provides the first hints of what these mergers will look like in a telescope. The filling and refilling of mini-disks affect the light signatures."

The simulation models supermassive black holes in a binary pair, each surrounded by its own gas disks. A much larger gas disk encircles the black holes and disproportionately feeds one mini-disk over another, leading to the filling-and-refilling cycle described in the paper.

"The evolution is long enough to study what the real science outcome would look like," said Manuela Campanelli, director of the Center for Computational Relativity and Gravitation and a co-author on the paper.

Binary supermassive black holes emit gravitational waves at lower frequencies than stellar-mass black holes. The ground-based Laser Interferometer Gravitational-wave Observatory, in 2016, detected the first gravitational waves from stellar mass black holes collisions with an instrument tuned to higher frequencies. LIGO's sensitivity is unable to observe the gravitational wave signals produced by supermassive black hole coalescence.

The launch of the space-based Laser Interferometer Space Antenna, or LISA, slated for the 2030s, will detect gravitational waves from colliding supermassive black holes in the cosmos. When operational in the 2020s, the ground-based Large Synoptic Survey Telescope, or LSST, under construction in Cerro Pachón, Chile, will produce the widest, deepest survey of light emissions in the universe. The pattern of signals predicted in the RIT study could guide scientists to orbiting pairs of supermassive black holes.

"In the era of multimessenger astrophysics, simulations such as this are necessary to make direct predictions of electromagnetic signals that will accompany gravitational waves," Bowen said. "This is the first step toward the ultimate goal of simulations capable of making direct predictions of the electromagnetic signal from binary black holes approaching merger."

Bowen and his collaborators combined simulations from RIT's Black Hole Lab computer clusters and the Blue Waters supercomputer at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, one of the largest supercomputers in the United States.

Astrophysicists from RIT, Johns Hopkins University and NASA Goddard Space Flight Center collaborated on the project. The publication is based on Bowen's Ph.D. dissertation at RIT and completes research begun by a co-author, Scott Noble, a former RIT post-doctoral researcher, now at NASA Goddard. Their research is part of a collaborative National Science Foundation-funded project led by Campanelli. Co-authors include Vassilios Mewes, RIT postdoctoral researcher; Miguel Zilhao, former RIT post-doctoral researcher, now at Universidade de Lisboa, in Portugal; and Julian Krolik, professor of physics and astronomy at Johns Hopkins University.

In an upcoming paper, the authors will explore further the correlation between gas flowing in and out of the accretion disks and fluctuating light emissions. They will present predictions of light signatures scientists can expect to see with advanced telescopes when looking for supermassive black holes approaching merger.

Media Contact

Susan Gawlowicz
susan.gawlowicz@rit.edu
585-475-5061

 @ritnews

http://www.rit.edu 

Susan Gawlowicz | EurekAlert!

Further reports about: NASA RIT accretion disks black hole gravitational waves light signals

More articles from Physics and Astronomy:

nachricht Quantum gas turns supersolid
23.04.2019 | Universität Innsbruck

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>