Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strength in Numbers: Physicists Identify New Quantum State Allowing Three -- but Not Two -- Atoms to Stick Together

04.07.2012
A Kansas State University-led quantum mechanics study has discovered a new bound state in atoms that may help scientists better understand matter and its composition.

The yet-unnamed bound state, which the physicists simply refer to as "our state" in their study, applies to three identical atoms loosely bound together -- a behavior called three-body bound states in quantum mechanics. In this state, three atoms can stick together in a group but two cannot. Additionally, in some cases, the three atoms can stick together even when any two are trying to repel each other and break the connection.

"It's really counterintuitive because not only is the pair interaction too weak to bind two atoms together, it's also actively trying to push the atoms apart, which is clearly not the goal when you want things to stick together," said Brett Esry, university distinguished professor of physics at Kansas State University and the study's lead investigator.

Esry, along with Kansas State University postdoctoral researcher Nicolais Guevara and University of Colorado-Boulder colleague Yujun Wang -- a Kansas State University graduate -- calculated the quantum state in their study, "New Class of Three-Body States," which was recently published in Physical Review Letters.

The state is similar to Efimov three-body states, a loosely-bound quantum state first predicted by Russian physicist Vitaly Efimov in the early 1970s. Physicists were able to first observe Efimov three-body states more than 30 years later through an experiment with ultracold atomic gases in 2006. These gases are one-billionth of a degree kelvin above absolute zero -- a temperature that only exists in a handful of laboratories in the world. Esry said similar ultracold atomic gases are needed to observe their new quantum state as well since it can only exist at this temperature.

While Efimov three-body states only occur in ultracold conditions with atoms classified as bosons, the state found by Esry and colleagues applies to both bosons and fermions -- the two particle types that all matter can be classified as.

Additionally, the new quantum state exists in a pocket between short-ranged and long-ranged interactions. Short- and long-ranged interactions -- or forces -- are the distance at which the particle interactions are effective. With a long-ranged force, the particles have a greater distance between them and do not have to touch to interact and influence each other. With a short-ranged force, however, the particles must be in much closer proximity and interact similar to billiard balls colliding with one another, Esry said. The Efimov three-body states only exist for short-ranged interactions.

"The three-body states that we found are formed by interactions that are neither short- nor long-ranged," Esry said. "Instead, they lie right at the border between the two. So, more than anything, finding this new quantum state fills in a knowledge gap about three-body systems and quantum mechanics, which have been studied for centuries by physicists -- including Sir Isaac Newton studying the Earth, moon and sun."

Scientists may also find uses for the quantum state in experiments with ultracold atomic gases.

"That's really the nature of basic research," Esry said. "We're trying things that hopefully will pay off for somebody 20 years or longer down the line. Efimov had to wait 35 years to see his states actually be seen and used as a way to understand these three-body systems. We hope we don't have to wait that long."

Esry and colleagues will continue exploring this quantum state and to uncover how combinations of bosons and fermions behave in it.

Brett Esry | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Physics and Astronomy:

nachricht Silicon 'neurons' may add a new dimension to computer processors
05.06.2020 | Washington University in St. Louis

nachricht The broken mirror: Can parity violation in molecules finally be measured?
04.06.2020 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>