Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists invented method of catching bacteria with 'photonic hook'

20.03.2018

An international research team discovered a new type of curved light beams, dubbed a "photonic hook". Photonic hooks are unique, as their radius of curvature is two times smaller than their wavelength. This is the smallest curvature radius of electromagnetic waves ever recorded. Photonic hook can improve the resolution of optical systems and control the movement of nanoparticles, individual cells, viruses or bacteria. Results of this research were published in Optics Letters and Scientific Reports.

For the longest time, physicists claimed that electromagnetic radiation propagates along a straight line; however, in 2007 the existence of a curved electromagnetic ray was experimentally confirmed. It was dubbed the "Airy beam" and, up until now, was considered a singular example of a curved ray.


This is a model of particle, hit by laser pulse, that emits new type of curved beam.

Credit: ITMO University

Recently, scientists from ITMO University, along with their colleagues from Tomsk State University, the University of Central Florida, the University of Ben-Gurion and the University of Bangor, have discovered a new type of curved light beam - the photonic hook.

"Photonic hook is formed when we direct a plane light wave to a dielectric particle of an asymmetric shape," says Alexander Shalin, head of the International Laboratory of Nano-opto-mechanics at ITMO University. "We studied a particle called cuboid. It has the appearance of a cube with a prism located on one side. Due to this shape, the time of the complete phase of the wave oscillations varies irregularly in the particle. As a result, the emitted light beam bends."

Scientists showed that the photonic hook's curvature radius can be much smaller than its wavelength. The curvature can also be adjusted by varying wavelength, incident light polarization as well as geometric parameters of the emitting particle. This property can be used to redirect an optical signal, to overcome the diffraction limit in optical systems or to move individual particles on a nanoscale.

"This idea was initially suggested by our colleagues from Tomsk State University. As soon as we made the necessary calculations and described this phenomenon, we decided to check whether a photon hook can be used in optomechanics," says Sergey Sukhov, researcher at the University of Central Florida. "It turned out that, using a photonic hook, we can make a manipulator to move particles along a curved path around transparent obstacles. This is possible due to radiation pressure and gradient optical force. When some particle hits the region of the highest intensity of the beam, the gradient force keeps it inside the beam while radiation pressure pushes it along the curved path of energy flow propagation."

Such a method of control over particles movement is promising for optofluidics. This technology uses light beams to direct micro-streams of dissolved nano- and microparticles. This allows scientists to make micro-reactors on chips and to investigate, for example, bacteria, viruses or individual cells.

"We are now going to make an experiment and attempt to move bacteria along a curved trajectory with a photonic hook," Alexander continues. "First of all, we need to get the hook itself in experimental conditions. We need to check, for instance, if a substrate under our cuboid would affect the hook emission. Next we will make a prototype of the micro-reactor and study how particles move."

Theoretical basis for the upcoming experiments includes two articles that hjave already caught the scientific community's attention.

"The reference article describing the photonic hook itself was followed by an article about its optomechanical application," Sergey comments. "Even before the first paper was published, MIT included it in its weekly review of the most interesting preprints. Yet, it also raised a lot of questions from the reviewers. Soon after it was published, it hit the top downloads on the Optics Letters website. By that time, the second article on optomechanics was accepted for printing. We hope that the results of our experiments will cause even greater interest."

###

Reference:

Photonic hook: a new curved light beam. Liyang Yue et al. Optics Letters, Feb. 9, 2018; https://www.osapublishing.org/ol/abstract.cfm?uri=ol-43-4-771

'Photonic Hook' based optomechanical nanoparticle manipulator. Angeleene Ang et al. Scientific Reports, Feb. 1, 2018. https://www.nature.com/articles/s41598-018-20224-4#author-information

Media Contact

Dmitry Malkov
dvmalkov@corp.ifmo.ru
895-337-75508

 @spbifmo_en

http://en.ifmo.ru/ 

Dmitry Malkov | EurekAlert!

More articles from Physics and Astronomy:

nachricht Appreciating the classical elegance of time crystals
20.09.2019 | ETH Zurich Department of Physics

nachricht 'Nanochains' could increase battery capacity, cut charging time
20.09.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

On the trail of self-healing processes: Bayreuth biochemists reveal insights into extraordinary regenerative ability

23.09.2019 | Life Sciences

New method for the measurement of nano-structured light fields

23.09.2019 | Life Sciences

Clarification of a new synthesis mechanism of semiconductor atomic sheet

23.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>