Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover 'electron equivalents' in colloidal systems

28.08.2019

Scientists find unusual behaviors in colloidal crystals.

Atoms have a positively charged center surrounded by a cloud of negatively charged particles. This type of arrangement, it turns out, can also occur at a more macroscopic level, giving new insights into the nature of how materials form and interact.


Argonne scientists have used small particles as electron equivalents to create metallic behavior in colloidal systems primarily composed of larger particles. These small particles could act as messengers, carrying information or other molecules over distances.

Credit: Byeongdu Lee / Argonne National Laboratory

In a new study from the U.S. Department of Energy's (DOE) Argonne National Laboratory, scientists have examined the internal structure of a material called a colloidal crystal, which consists of a highly ordered array of larger and smaller particles interspersed in regular arrangements. A greater knowledge of how colloidal crystals are structured and behave could help scientists determine the applications to which they are best suited, like photonics.

"The smaller particles essentially act like a glue that holds the larger particle arrangement together," -- Byeongdu Lee, Argonne X-ray physicist.

... more about:
»DNA »Photonics »X-ray »colloidal crystal »nanometers

In pioneering research outlined in a recent issue of Science, scientists tethered smaller particles to larger ones using DNA, allowing them to determine how the smaller particles filled in the regions surrounding the larger ones. When using particles as small as 1.4 nanometers -- extremely small for colloidal particles -- scientists observed an exciting effect: The small particles roamed around regularly ordered larger particles instead of remaining locked in an ordered fashion.

Because of this behavior, the colloidal crystals could be designed to lead to a variety of new technologies in the field of optics, catalysis, and drug delivery. The small particles have the potential to act as messengers, carrying other molecules, electric current or information from one end of a crystal to another.

"The smaller particles essentially act like a glue that holds the larger particle arrangement together," said Argonne X-ray physicist and study author Byeongdu Lee. "With only a few beads of glue, the best position to place them is on the corners between the larger particles. If you add more glue beads, they would overflow to the edges."

The small particles that sit on the corners tend to stay still -- a configuration Lee called localization. The additional particles that are on the edges have more freedom of movement, becoming delocalized. By being tethered to larger particles and with the ability to be both localized and delocalized, the small particles act as "electron equivalents" in the crystal structure. The delocalization of small particles, which the authors called metallicity, had not been observed so far in colloidal particle assemblies.

Additionally, since the small particles delocalize in part, the effect creates a material that challenges most traditional definitions of a crystal, according to Lee.

"Normally, when you change the composition of a crystal, the structure changes as well," he said. "Here, you can have a material that is able to maintain its overall structure with different proportions of its components."

To image the structure of the colloidal crystals, Lee and his colleagues used the high-brightness X-ray beams provided by Argonne's Advanced Photon Source (APS), a DOE Office of Science User Facility. The APS offered a key advantage in that it allowed the scientists to observe the structure of the crystal directly in solution. "This system is only stable in solution, once it dries, the structure deforms," Lee said.

###

A paper based on the study, "Particle analogs of electrons in colloidal crystals," appeared in the June 21 issue of Science.  Other authors on the study included Martin Girard, Shunzhi Wang, Jingshan Du, Anindita Das, Ziyin Huang, Vinayak Dravid, Chad Mirkin and Monica Olvera de la Cruz, all of Northwestern University.

The Argonne research was funded by DOE's Office of Science (Office of Basic Energy Sciences).

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Media Contact

Beth Schlesinger
bschlesinger@anl.gov
630-252-5325

 @argonne

http://www.anl.gov 

Beth Schlesinger | EurekAlert!
Further information:
https://www.anl.gov/article/scientists-discover-electron-equivalents-in-colloidal-systems
http://dx.doi.org/10.1126/science.aaw8237

Further reports about: DNA Photonics X-ray colloidal crystal nanometers

More articles from Physics and Astronomy:

nachricht Creating switchable plasmons in plastics
11.12.2019 | Linköping University

nachricht Highly charged ion paves the way towards new physics
11.12.2019 | Max-Planck-Institut für Kernphysik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>