Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020

Blobs can wreak havoc in plasma required for fusion reactions. This bubble-like turbulence swells up at the edge of fusion plasmas and drains heat from the edge, limiting the efficiency of fusion reactions in doughnut-shaped fusion facilities called "tokamaks." Researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have now discovered a surprising correlation of the blobs with fluctuations of the magnetic field that confines the plasma fueling fusion reactions in the device core.

New aspect of understanding


Image showing spiraling magnetic field fluctuations at the edge of the NSTX tokamak.

Photo courtesy of Physics of Plasmas. Composition by Elle Starkman/Office of Communications

Further investigation of this correlation and its role in the loss of heat from magnetic fusion reactors will help to produce on Earth the fusion energy that powers the sun and stars.

"These results add a new aspect to our understanding of the plasma edge heat loss in a tokamak," said physicist Stewart Zweben, lead author of a paper in Physics of Plasmas that editors have selected as a featured article. "This work also contributes to our understanding of the physics of blobs, which can help to predict the performance of tokamak fusion reactors."

Fusion reactions combine light elements in the form of plasma -- the hot, charged state of matter composed of free electrons and atomic nuclei that makes up 99 percent of the visible universe -- to produce massive amounts of energy.

Scientists are seeking to create and control fusion on Earth as a source of safe, clean and virtually limitless power to generate electricity.

PPPL researchers discovered the surprising link last year when re-analyzing experiments made in 2010 on PPPL's National Spherical Torus Experiment (NSTX) -- the forerunner of today's National Spherical Torus Experiment-Upgrade (NSTX-U). The blobs and fluctuations in the magnetic field, called "magnetohydrodynamic (MHD)" activity, develop in all tokamaks and have traditionally been seen as independent of each other.

Surprise clue

The first clue to the correlation was the striking regularity of the trajectory of large blobs, which travel at roughly the speed of a rifle bullet, in experiments analyzed in 2015 and 2016. Such blobs normally move randomly in what is called the "scrape-off layer" at the edge of tokamak plasma, but in some cases all large blobstraveled at nearly the same angle and speed.

Moreover, the time between the appearance of each large blob at the edge of the plasma was nearly always the same, virtually coinciding with the frequency of dominant MHD activity in the plasma edge.

Researchers then tracked the diagnostic signals of the blobs and the MHD activity in relation to each other to measure what is called the "cross-correlation coefficient," which they used to evaluate a set of the 2010 NSTX experiments. Roughly 10 percent of those experiments were found to show a significant correlation between the two variables.

The scientists then analyzed several possible causes of the correlation, but could find no single compelling explanation. To understand and control this phenomenon, Zweben said, further data analysis and modeling will have to be done -- perhaps by readers of the Physics of Plasmas paper.

Support for this work comes from the DOE Office of Science, with portions of the research performed under the auspices of Lawrence Livermore National Laboratory.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

For more information, visit energy.gov/science

Media Contact

John Greenwald
jgreenwa@pppl.gov
609-243-2672

 @PPPLab

http://www.pppl.gov

John Greenwald | EurekAlert!
Further information:
https://www.pppl.gov/news/2020/05/return-blob-scientists-find-surprising-link-troublesome-turbulence-edge-fusion-plasmas
http://dx.doi.org/10.1063/5.0006515

More articles from Physics and Astronomy:

nachricht Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications
13.07.2020 | Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

nachricht Robust high-performance data storage through magnetic anisotropy
13.07.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Shedding light on the brown color of algae

14.07.2020 | Life Sciences

Color barcode becomes ISO standard

14.07.2020 | Information Technology

New substance library to accelerate the search for active compounds

14.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>