Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Putting a Freeze on Oscillator Vibrations

19.06.2009
University of Oregon physicists have successfully landed a one-two punch on a tiny glass sphere, refrigerating it in liquid helium and then dosing its perimeter with a laser beam, to bring its naturally occurring mechanical vibrations to a near standstill.

The findings, published in Nature Physics, could boost advances in information processing that exploits special quantum properties and in precision-measurements for nanotechnology.

The ability to freeze mechanical fluctuations, or vibrations, with a laser in so-called optomechanical oscillators, also opens a window on the little-explored transition between quantum and classical physics, said principal investigator Hailin Wang.

Wang, a member of the Oregon Center for Optics and a professor in the UO physics department, and his doctoral student Young-Shin Park performed the research under grants from the National Science Foundation and Army Research Laboratory through the Oregon Nanoscience and Microtechnologies Institute (ONAMI).

In nanotechnology, understanding phonons -- vibrations that carry energy -- is becoming increasingly important. For their project, Wang and Park purposely manufactured a deformed silica microsphere about 30 microns in diameter, about the size of a human hair.

A combination of cryogenic pre-cooling of the sphere to 1.4 Kelvin (minus 457.15 degrees Fahrenheit) and hitting the sphere's outer surface with a laser allowed researchers to extract energy from the mechanical oscillator and lower the level of phonon excitations to near 40 quanta. Ultimately, Wang said, the goal is to reduce that level, known as the average phonon occupation, to one quantum.

"Our goal is to get to and work with the quantum mechanical ground state in which there is very little excitation or displacement," Wang said. Reaching one quantum would require a temperature just a few thousandths of a degree from absolute zero (minus 459.67 degrees Fahrenheit).

Video with Hailin Wang is available at: http://www.youtube.com/watch?v=4Ho3rf8vPhk.

About the University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 62 leading public and private research institutions in the United States and Canada. The UO is one of only two AAU members in the Pacific Northwest.

Source: Hailin Wang, professor of physics, UO College of Arts and Sciences, 541-346-4758 or 4807; hailin@uoregon.edu

Links:
Wang faculty page: http://physics.uoregon.edu/physics/faculty/wang.html;
Oregon Center for Optics: http://oco.uoregon.edu/index.html;
physics department: http://physics.uoregon.edu/;
College of Arts and Sciences: http://cas.uoregon.edu;
ONAMI: http://www.onami.us/

Jim Barlow | Newswise Science News
Further information:
http://www.uoregon.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>