Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light sheds on new fibre's potential to change technology

11.12.2007
Photonic crystal fibre’s ability to create broad spectra of light, which will be the basis for important developments in technology, has been explained for the first time in an article in the leading science journal Nature-Photonics.

The fibre can change a pulse of light with a narrow range of wavelengths into a spectrum hundreds of times broader and ranging from visible light to the infra-red. This is called a supercontinuum.

This supercontinuum is one of the most exciting areas of applied physics today and the ability to create it easily will have a significant effect on technology.

This includes telecommunications, where optical systems hundreds of times more efficient than existing types will be created because signals can be transmitted and processed at many wavelengths simultaneously.

Supercontinua generated in photonic crystal fibres also help to create optical clocks which are so accurate that they lose or gain only a second every million years. Two physicists based in the US and Germany shared the Nobel Prize for Physics in 2005 for work in this area.

Despite these applications, the mechanism behind supercontinuum generation has remained unclear, which has stopped physicists from being even more precise in using it.

But researchers at the University of Bath have now discovered the reason for much of the broadening of the spectrum.

Dr Dmitry Skryabin and Dr Andrey Gorbach, of the Centre for Photonics and Photonic Materials in the Department of Physics, found that the generation of light across the entire visible spectrum was caused by an interaction between conventional pulse of lights and what are called solitons, special light waves that maintain their shape as they travel down the fibre.

The researchers found that the pulses of light sent down the fibre get struck behind the solitons as both pass down the fibre, because the solitons slow down as they move. This barrier caused by the solitons forces the light pulses to shorten their wavelength and so become bluer, just as the solitons’ wavelength lengthens, becoming redder. This dual effect creates the broadened spectrum.

“One of the most startling effects of the photonic crystal fibre is its ability to create a strong bright spectrum of visible and infra red light from a very brief pulse of light,” said Dr Skryabin.

“We have never fully understood exactly why this happens until our research showed how the pulse of light is slowed down and blocked by other activity in the fibre, forcing it to shorten its wavelength.

“Until now the creation and manipulation of the supercontinua in photonic crystal fibres have been done in an ad-hoc way without knowing exactly why different effects are observed. But now we should be able to be much more precise when using it.”

Dr Skryabin believes that the interaction between light pulses and solitons has similarities with the way gravity acts on objects.

See Related Links for more on the research carried out in the Centre for Photonics and Photonic Materials.

Tony Trueman | alfa
Further information:
http://www.bath.ac.uk/news/2007/12/10/fibre-theory.html

More articles from Physics and Astronomy:

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>