Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Xenon outs WIMPs

02.05.2002


The UK’s Dark Matter Collaboration’s detector lab in Buolby Mine, Yorkshire.


Underneath the mine the WIMP detector is shielded from cosmic rays.


Dark-matter detector could pin down the Universe’s missing mass.

Researchers in London are building a cheap dark-matter detector that should be able to spot the exotic particles called WIMPs that are suspected of hiding most of the Universe’s missing mass1.

A prototype of the detector has just shown, for the first time, that it can spot something as close to a WIMP as it’s possible to produce in the lab.



WIMP stands for ’weakly interacting massive particle’. If WIMPs exist at all, they are thought to be hefty compared to the protons and neutrons in an atomic nucleus, but to barely interact with these components of normal matter.

Physicists believe that WIMPs make up as much as 99% of the total mass of the Universe. Astronomers can’t see this matter - hence its ’dark’ moniker - but they can see its gravitational effects on the way the stars and gas in galaxies rotate.

Even if billions of WIMPs are streaming through our bodies, they don’t have any effect. So WIMP-hunting could be a frustrating affair - like trying to fish for shrimps using the net from a football goal.

Several experiments are currently going to great lengths in the search for WIMPS. The problem is that detectors capable of WIMP-spotting will probably pick up other cosmic particles, too, swamping the WIMP signal. Cosmic rays - high-energy particles of normal matter from space - and radioactive emissions would also register.

To shield a WIMP-detector from cosmic rays, it must be placed deep underground. The UK Dark Matter Collaboration (UKDMC) houses detectors at a depth of 1,100 metres in a salt mine in Yorkshire. Another array in Italy is buried in a tunnel beneath a mountain.

It would all be a lot easier if a detector could differentiate between a cosmic ray and a WIMP. Last year Alex Howard and co-workers at Imperial College, London, proposed a new type of WIMP detector that could, in principle, do just that. The simple device contains liquid and gaseous xenon.

Howard’s team said that WIMPs entering the detector would occasionally collide with the nucleus of a xenon atom, causing a brief flash of light called a primary scintillation and removing an electron from the atom. An electric field would pull these electrons through the liquid into the xenon gas, where they would induce a secondary scintillation flash.

These two distinct events are crucial to WIMP identification. Other particles, such as cosmic rays, induce the same processes. But the brightness of the primary and secondary scintillations would be different for WIMPs, cosmic rays and other particles.

The closest thing to a WIMP that the researchers could use readily to test their device is a neutron. So they teamed up with Farhat Beg and colleagues, also at Imperial, who have developed a cheap and convenient table-top source of neutron beams called a plasma focus. Neutrons for scientific research are usually generated in nuclear reactors.

Using this source, the Imperial researchers show that the xenon detector spots and identifies neutrons, implying that it should be able to do the same with WIMPs. Indeed, neutrons give a signal so much like that of WIMPs that the remaining challenge will be to tell them apart.

"We’re now making a full-scale detector," Howard says. They hope to install it in the UKDMC mine in the next 12 to 18 months.

References

  1. Beg, F. N. et al. Table-top neutron source for characterization and calibration of dark matter detectors. Applied Physics Letters, 80, 3009 - 3011, (2002).

PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>