Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Xenon outs WIMPs

02.05.2002


The UK’s Dark Matter Collaboration’s detector lab in Buolby Mine, Yorkshire.


Underneath the mine the WIMP detector is shielded from cosmic rays.


Dark-matter detector could pin down the Universe’s missing mass.

Researchers in London are building a cheap dark-matter detector that should be able to spot the exotic particles called WIMPs that are suspected of hiding most of the Universe’s missing mass1.

A prototype of the detector has just shown, for the first time, that it can spot something as close to a WIMP as it’s possible to produce in the lab.



WIMP stands for ’weakly interacting massive particle’. If WIMPs exist at all, they are thought to be hefty compared to the protons and neutrons in an atomic nucleus, but to barely interact with these components of normal matter.

Physicists believe that WIMPs make up as much as 99% of the total mass of the Universe. Astronomers can’t see this matter - hence its ’dark’ moniker - but they can see its gravitational effects on the way the stars and gas in galaxies rotate.

Even if billions of WIMPs are streaming through our bodies, they don’t have any effect. So WIMP-hunting could be a frustrating affair - like trying to fish for shrimps using the net from a football goal.

Several experiments are currently going to great lengths in the search for WIMPS. The problem is that detectors capable of WIMP-spotting will probably pick up other cosmic particles, too, swamping the WIMP signal. Cosmic rays - high-energy particles of normal matter from space - and radioactive emissions would also register.

To shield a WIMP-detector from cosmic rays, it must be placed deep underground. The UK Dark Matter Collaboration (UKDMC) houses detectors at a depth of 1,100 metres in a salt mine in Yorkshire. Another array in Italy is buried in a tunnel beneath a mountain.

It would all be a lot easier if a detector could differentiate between a cosmic ray and a WIMP. Last year Alex Howard and co-workers at Imperial College, London, proposed a new type of WIMP detector that could, in principle, do just that. The simple device contains liquid and gaseous xenon.

Howard’s team said that WIMPs entering the detector would occasionally collide with the nucleus of a xenon atom, causing a brief flash of light called a primary scintillation and removing an electron from the atom. An electric field would pull these electrons through the liquid into the xenon gas, where they would induce a secondary scintillation flash.

These two distinct events are crucial to WIMP identification. Other particles, such as cosmic rays, induce the same processes. But the brightness of the primary and secondary scintillations would be different for WIMPs, cosmic rays and other particles.

The closest thing to a WIMP that the researchers could use readily to test their device is a neutron. So they teamed up with Farhat Beg and colleagues, also at Imperial, who have developed a cheap and convenient table-top source of neutron beams called a plasma focus. Neutrons for scientific research are usually generated in nuclear reactors.

Using this source, the Imperial researchers show that the xenon detector spots and identifies neutrons, implying that it should be able to do the same with WIMPs. Indeed, neutrons give a signal so much like that of WIMPs that the remaining challenge will be to tell them apart.

"We’re now making a full-scale detector," Howard says. They hope to install it in the UKDMC mine in the next 12 to 18 months.

References

  1. Beg, F. N. et al. Table-top neutron source for characterization and calibration of dark matter detectors. Applied Physics Letters, 80, 3009 - 3011, (2002).

PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht The measurements of the expansion of the universe don't add up
19.11.2019 | FECYT - Spanish Foundation for Science and Technology

nachricht How LISA pathfinder detected dozens of 'comet crumbs'
19.11.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>