Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revamped experiment could detect elusive particle

27.04.2007
An experiment called “shining light through walls” would seem hard to improve upon.

But University of Florida physicists have proposed a way to do just that, a step they say considerably improves the chance of detecting one of the universe’s most elusive particles, a candidate for the common but mysterious dark matter.

In a paper that appears online today in the journal Physical Review Letters, physicists at the University of Florida and Lawrence Livermore National Laboratory propose a redesign of the experiment currently being attempted in various forms by several groups of physicists worldwide. Although theoretical at the moment, they say their design could make such experiments a billion times more sensitive in their goal of detecting axions.

Axions are elemental particles whose confirmation would shed light on several different conundrums in particle physics. These could include pinning down the nature of dark matter, the mysterious substance said to make up 30 percent of the universe but so far observed only indirectly by its effects.

“A half dozen groups want to do this experiment, and some of them probably will try this approach,” said Pierre Sikivie, a faculty member in UF’s physics department and an author of the paper. “It works in principle, but in reality it will take some effort to set this up right so that it can produce a result.”

The unimproved experiment seeks to detect axions by shining a laser down the bore of a powerful superconducting magnet. A wall in the middle stops the laser cold, with the theoretical axions continuing through the wall and into the other side of the magnet. There, the magnet reconverts them into photons, or particles of light.

The detection of this light “reappearing” on the other side of the wall is what gives the experiment its iconic name.

Researchers in the U.S. and Europe are in various stages of conducting the experiment. The activity has been stimulated by a recent Italian experiment that claims to have discovered axion-like particles. The hope is to confirm the Legnaro National Laboratories’ results or take them a step further.

Sikivie, UF physics professor David Tanner and Karl van Bibber, a physicist at the Lawrence Livermore National Laboratory, propose a redesign of the “shining light through walls” experiment to make it, in their words, “vastly more sensitive.”

In a nutshell, they suggest placing pairs of highly reflective mirrors called Fabry-Perots cavities on both sides of the wall. The cavity on the laser light side of the wall would cause the light to bounce back and forth repeatedly, as though in an echo chamber. This action would produce many more of the hypothesized axions than a single beam of light, making them easier to detect on the other side of the wall.

“What happens is, because the light goes back and forth many times as it goes through the magnet, it produces more axions,” Sikivie said.

The Fabry-Perot cavity on the other side of the wall would perform a similar function, producing even more photons from the added axions.

Sikivie said researchers are doing separate experiments to detect axions produced by the sun, which would seem to be an easier approach because the sun is a much more powerful source than any laser. But the modified experiment would at least in theory have a higher sensitivity than these solar-based experiments.

“With these two cavities on both sides, it actually gets better, by a factor of 10 maybe, than the solar axion experiments,” he said.

Pierre Sikivie | EurekAlert!
Further information:
http://www.phys.ufl.edu

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>