Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feather-light touch all that's needed for Darwin's frictionless optics

13.04.2007
ESA's Darwin mission will look for extrasolar planets and signs of life. The Agency's Technology Research Programme has sponsored the development of critical optical components whose frictionless mechanism can respond to the touch of a feather.

ESA's Darwin mission aims to discover extrasolar planets and examine their atmospheres for signs of life, particularly for the presence of certain life-related chemicals such as oxygen and carbon dioxide. The major technical challenge lies in distinguishing, or resolving, the light from an extrasolar planet from the hugely overwhelming radiation emitted by the planet's nearby star.

The multi-satellite Darwin mission will use optical interferometry in which at least three separate orbiting telescopes jointly operate as an equivalent single telescope with a much larger effective aperture, thus achieving the required resolution. With this method, multiple smaller telescopes having actual apertures of, for example, 3 metres, can combine to provide an effective aperture of several tens to hundreds of metres, depending on the distance between the individual telescopes.

Creating delicate phase delays

Darwin will use nulling interferometry, a specific interferometric technique used to shield the overwhelming star emissions by precisely delaying the radiation coming from some of the telescopes by a small amount. This, in combination with achromatic - or colour independent - phase shifters, will cancel out the bright star radiation while allowing the much fainter extrasolar planet light to be detected.

A component known as an Optical Delay Line (ODL) is at the core of such interferometric observations. An ODL is a sophisticated opto-mechanical device that can introduce well-defined variations, or delays, in the optical path of a light beam and includes a moving mirror positioned with extremely good accuracy.

Precise movement using magnetic levitation

To demonstrate the critical technology required by Darwin, ESA's Technology Research Programme has sponsored the design and testing of an ODL that uses magnetic levitation for precise, frictionless mirror movement. The ODL's wonderfully sophisticated guidance and translation mechanism is, thanks to the magnetic levitation, completely contactless and frictionless and can be easily displaced by the faint touch of a feather (see video clip accompanying article).

The optical delay introduced by the ODL must be capable of adjusting the optical path length of collected light beams with an accuracy of a few nanometers; 1 nanometre corresponds to a millionth of a millimetre.

Under ESA sponsorship, the ODL was built by an industrial consortium led by TNO Science and Industry, part of The Netherlands' Organisation for Applied Scientific Research, and including SRON and Dutch Space in the Netherlands, Belgium's Micromega-Dynamics s.a. and the Centre Spatial de Liège, and France's Alcatel Alenia Space and Sageis CSO. The ODL magnetic suspension technology was pre-developed by Micromega-Dynamics under the ESA-funded MABE (Magnetic Bearing) research study, which included quasi-zero gravity testing during parabolic flights.

Sub-nanometre resolution to be incorporated in future flight mechanism

The ODL shown here successfully demonstrated sub-nanometre resolution and stability; the design, materials and manufacturing processes for this ODL are representative of a future flight-capable mechanism.

The ODL has also been thoroughly tested in Darwin's demanding cryogenic environment, at 40 Kelvin - or about -233 Celsius.

Darwin's ODLs are uniquely engineered to operate at cryogenic temperatures to avoid self-interference from the satellites' own thermal radiation. This is mandatory as Darwin will conduct observations at mid-infrared wavelengths, where the planet-to-starlight brightness ratio is relaxed compared to that in visible wavelengths, and where life-related marker chemicals such as water, ozone and carbon dioxide can be detected.

The ODLs will be used in Darwin for co-phasing the light collected by the separate telescopes within a central hub spacecraft, which is responsible for the correct recombination of the light beams and hence achieving the high-performance resolution of a single very large telescope.

Malcom Fridlund | alfa
Further information:
http://www.esa.int/techresources/ESTEC-Article-fullArticle_par-28_1176186226737.html

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>