Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising transition observed when flowing grains become too jam packed to move

31.01.2007
Using color-shifting cylinders as substitutes for sand grains or coal lumps, a Duke University-led team of physicists has pinpointed a critical density level where granular materials suddenly cease flowing like a liquid and instead congeal into a state of rigidity.

That magic moment -- described as a "jamming transition" -- is announced by a kind of phase change analogous to the freezing of water, the scientists showed in experiments.

"The transition does not occur at the point that the particles are as dense as they can possibly be," said Robert Behringer, the Duke physics professor who led the research team. "Actually, they are just beginning to get densely packed. So you don't need that much compaction to make them like solids. You just need this sort of magical amount.

"That's really very peculiar," he said. "Experience wouldn't suggest that there would be this magic point where there would suddenly be this leap."

The findings could help engineers resolve when grainlike coal pieces will clump together and when they will flow like a liquid. "If you open the door to a coal hopper, you don't want the coal to be like a solid," Behringer said. "You want it to flow."

The report was posted online on Monday, Jan. 29, in the journal Physical Review Letters.

The research was funded by the National Science Foundation; the U.S.-Israel Binational Science Foundation; and Deutsche Forschungsgemeinschaft, the German equivalent of the NSF.

Behringer has spent years overseeing experimental studies of granular materials, a group that includes sand, coal, cereal, sugar, pills, powders, gravel and ice cubes.

Such materials exhibit uncanny group behavior in which they sometimes flow but other times clump rigidly in a mass, he said. This behavior is unpredictable, with examples occurring in such diverse events as coal jams and avalanches.

A previous Behringer-led experiment demonstrated that small plastic beads exhibiting grainlike behavior can be made to "freeze" into crystallike solids or "melt" into loose and fluidlike irregularity, depending on how they are stirred or shaken.

In the new study, the researchers provided an unprecedented analysis detailing what happens as free-flowing grains begin to get jammed by each other.

The experiment relied on plastic cylinders as grain substitutes. The cylinders changed color where squeezed, giving researchers a glimpse of jagged "force chains" that transmit the group effects of grain-on-grain influences within a closed system.

The researchers compressed the cylinders within an adjustable frame and analyzed what happened using special computational mathematics developed by Trushant Majmudar, the first author of the journal report, who is a former Duke graduate student and now a postdoctoral researcher at the Massachusetts Institute of Technology.

"When a container is really large, there's lots of space between the particles so they don't touch very much and the system acts like a fluid," Behringer said. "But as you shrink the container, the number of contacts grows. And the prediction was that when there are enough contacts per particle, the system will make this transition from fluid to solid."

Confirming the almost-decade-old predictions of theoreticians from the University of Pennsylvania and the University of Chicago as well as Princeton, Yale and Brandeis universities, the Duke team documented that at a critical confluence, pressure and particle-density readings suddenly increase and then diverge -- a change mathematically known as a "power law."

Such power laws are also expressed in phase transitions, such as the point at which water and steam become indistinguishable, Behringer said.

Comparative digital images of the system in "almost jammed" versus "highly jammed" states graphically documented the difference, with a network of glowing force chains clearly visible in the highly jammed image, he said.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>