Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploding star strafed Earth

12.02.2002


A supernova is the death throes of a large star
© NASA


A supernova may have caused mass extinction two million years ago.

The explosion of a dying star could have ended much of marine life on Earth two million years ago. The supernova could have strafed the Earth’s atmosphere with cosmic rays, severely damaging the ozone layer and exposing living organisms to high levels of the Sun’s hazardous ultraviolet rays, US researchers propose1.

This idea dates back to the 1950s, but now Narciso Benítez of Johns Hopkins University in Baltimore, Maryland, and colleagues have come up with the first plausible evidence. Their proposal remains tentative, but is consistent with what is known about the likelihood of nearby stellar explosions and the telltale signatures of these events on our planet.



Supernovae are the death throes of large stars. When such stars run out of fuel for nuclear fission, they collapse under their own gravity, heat up rapidly and explode, releasing huge amounts of matter and energy. Fortunately for us, such outbursts are rare: the most recent one in our own galaxy was spotted in 1604, and was too far away to pose any risk. Several supernovae have been observed more recently in other galaxies.

One-fifth of all supernovae occur in large groups of relatively young stars that are thought to have coalesced from the same gas cloud. One such cluster in our own galaxy is the Scorpius-Centaurus association, which comprises three subgroups of stars.

Each subgroup would have generated supernovae at different times: about 10, 7 and 2 million years ago, say Benítez’ group. The most recent episode could have included a supernova as little as 130 light years from Earth. This is not close enough to fry our planet. But it would have left a mark that the researchers think has already been found.

Three years ago, scientists in Germany reported high concentrations of iron-60 in two layers of ocean rock, dated at about 0-3 and 4-6 million years old2. Iron-60 is a rare form produced on Earth by nuclear reactions involving cosmic rays, such as those that supernovae generate.

Putting these arguments together, Benítez’ team proposes that the most recently formed iron-60 layer could be the result of a nearby supernova in the Scorpius-Centaurus association around two million years ago. The supernova could have left another signature - in the fossil record.

Two million years ago, many marine creatures, such as bivalve molluscs, died out suddenly all over the planet. As mass extinctions go, this was a mild one. But no one knows what caused it.

Benítez and his colleagues think that a nearby supernova at this time could have showered the Earth with cosmic rays. These charged subatomic particles collide with atoms in the air, initiating chemical reactions. Copious cosmic rays are thought to produce nitrogen monoxide, which can destroy ozone molecules.

The researchers calculate that a supernova 130 light years away could have thinned the ozone layer by up to 60 per cent, exposing marine organisms to ultraviolet rays from the Sun. This could have killed off plankton, and thence the molluscs that live off them.

To support this hypothesis, astronomers now need to find the smoking gun: remnants of ancient supernovae in nearby star clusters.

References
  1. Benítez, N., Maíz-Apellániz, J. & Canelles, M. Evidence for nearby supernova explosions. Physical Review Letters, 83, 081101, (2002).
  2. Knie, K. et al., Indication for supernova produced 60Fe activity on Earth. Physical Review Letters, 83, 18 - 21, (1999).


PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Double layer of graphene helps to control spin currents
18.10.2019 | University of Groningen

nachricht Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling
17.10.2019 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>