Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gravity leaps into quantum world

17.01.2002


Particles don’t fall smoothly under gravity, they lurch.
© Pictor/Photodisc


Researchers finally measure the subtle quantum effects of fourth fundamental force.

Far from falling smoothly, objects moving under gravity do so in lurching, quantum leaps, a French experiment has revealed1. The finding confirms that gravity, like the Universe’s three other fundamental forces, can have a quantum effect.

Particles, such as electrons confined to their orbital shells around the nucleus of an atom, are restricted by the rules of quantum mechanics. To move from one position to another, they must jump to the next quantum state.



Theoretically, this rule holds for all matter under the influence of nature’s four fundamental forces: electromagnetism, weak and strong nuclear force and gravity. But gravity, especially at small scales, is a very feeble force, making it extremely difficult to measure its quantum effects.

There’s no point in looking for quantum behaviour in everyday objects. It is occurring, but the larger things become, the more subtle are the quantum effects. Even small molecules are practically immune to the weird ways of the quantum world.

Valery Nesvizhevsky and his colleagues studied ultracold neutrons (UCNs) at the Laue-Langevin Institute in Grenoble, France. These very slow-moving, uncharged particles normally team up with protons to form the nucleus of an atom. The team isolated the neutrons from the effects of the other three forces in a specially designed detector.

By following the progress of hundreds of UCNs falling from the top of the detector to the bottom, the team found that the particles exist only at certain heights. "They do not move continuously, but rather jump from one height to another as quantum theory predicts," says Nesvizhevsky.

That someone has measured quantum leaps has physicists wide-eyed. "The effects are so small it is remarkable that they can actually observe them," says Thomas Bowles, a particle physicist at Los Alamos National Laboratory in New Mexico.

Trick questions

This satisfying trick may also have profound implications for the future of physics. "Right now, we don’t have a theory of how gravity is created," says Bowles. If refined, he says, apparatus like Nesvizhevsky’s could explain how gravity behaves in the quantum world - and perhaps where it comes from.

"If you’re searching for something in fundamental physics, this is a very clean system," agrees Nesvizhevsky. It should allow researchers to pick apart some of the niggling questions about the fundamental properties of matter.

It might even be possible, suggests Bowles, to work out why Einstein’s theory of general relativity - which explains gravity and large things, such as galaxies and the Universe - doesn’t tally with quantum mechanics, the physicist’s handbook of the very small.

References

  1. Nesvizhevsky, V. V. et al. Quantum states of neutrons in the Earth’s gravitational field. Nature, 415, 297 - 299, (2002).


TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020114/020114-8.html

More articles from Physics and Astronomy:

nachricht Colloidal Quantum Dot Photodetectors can now see further than before
21.01.2020 | ICFO-The Institute of Photonic Sciences

nachricht Compact broadband acoustic absorber with coherently coupled weak resonances
21.01.2020 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new look at 'strange metals'

21.01.2020 | Materials Sciences

Body's natural signal carriers can help melanoma spread

21.01.2020 | Health and Medicine

Structual color barcode micromotors for multiplex biosensing

21.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>