Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers have knots in light all tied up

12.11.2004


Researchers from the Universities of Southampton and Glasgow have succeeded in tying knots in light beams.



Using a computer-designed hologram, they created threads of darkness embedded in a laser beam. The hologram bends the direction of optical energy flow, so these dark threads form loops. The loops can then be linked together, or tied into knots.

Dr Mark Dennis, a University of Southampton mathematician, worked in collaboration with Professor Miles Padgett, Dr Johannes Courtial, and Jonathan Leach in the Optics group in the University of Glasgow’s Department of Physics and Astronomy. Their findings are set out in a paper ‘Knotted threads of darkness’ which is published in Nature this week (11 November 2004).


Dr Dennis made the detailed calculations required to find the ideal mathematical form for the knotted laser beams while he was a Leverhulme Fellow based at the University of Bristol. He recently took up the post of Royal Society Research Fellow in the School of Mathematics at Southampton.

The role of the Glasgow group was designing the hologram that produced the exact combination of beams required to form the loops and knots. A laser was used to illuminate the hologram and the detailed structures recorded by a sensitive camera.

This work is experimental confirmation of earlier theoretical predictions made by Dr Dennis, with Professor Sir Michael Berry at the University of Bristol. Scientifically the work dates back to Lord Kelvin, who tried to formulate a theory for atoms made of loops and knots, embedded not within light, but in the fictitious ether.

Dr Dennis explains: ‘In the present day, the ability to synthesize such knots demonstrates the precise three-dimensional control it is possible to exert over light. These dark loops, links and knots are exciting structures in themselves. They could also be used as traps for quantum mechanical matter such as Bose-Einstein condensates which are matter waves on a macroscopic scale.’

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>