Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gravity Probe B status report

26.04.2004


At 9:57:24 am Pacific Daylight Time on Tuesday, April 20, 2004, the Gravity Probe B spacecraft had a picture-perfect launch from Vandenberg Air Force Base in South-central California. The Boeing Delta II rocket hit the exact center of the bull’s eye in placing the spacecraft in its target polar orbit, 400 miles above the Earth.


The Gravity Probe B spacecraft is shown in orbit around the Earth, as viewed by a camera mounted on the second stage of the Delta II rocket that carried it to space. Now placed in its polar orbit of 400 miles above Earth, the Gravity Probe B spacecraft circles the globe every 97.5 minutes, crossing over both poles. (NASA/KSC)



"The Gravity Probe B Mission Operations Team has performed very well during this critical spacecraft activation period," said Tony Lyons, Gravity Probe B NASA Deputy Program Manager from Marshall Space Flight Center in Huntsville, Ala.

"We’re ecstatic," said Stanford Gravity Probe B Program Manager, Gaylord Green. "We couldn’t have asked for a better or more beautiful launch-nor a more perfect orbit insertion."


At approximately one hour eleven minutes, the spacecraft’s solar arrays deployed, and shortly thereafter, the on-board cameras treated all viewers, via NASA TV, to the extraordinary sight of the separation of the spacecraft from the second stage rocket, with a portion of the Earth illuminated in the background.

After two days in orbit, all Gravity Probe B systems are performing as planned. The solar arrays are generating power, and all electrical systems are powered on. The spacecraft is communicating well with the Tracking and Data Relay Satellite System (TDRSS) and supporting ground stations.

All four Gyro Suspension Systems have now been activated. In addition, a lift check was successfully accomplished for gyros #2 and #3. "We’ve successfully achieved the first of many upcoming steps in preparing these four gyroscopes for science data collection," said Rob Brumley, Stanford Gravity Probe B Deputy Program Manager, Technical. "We are all extremely gratified with the initial performance of these gyroscopes in space, including the first ever levitation of a Gravity Probe B gyro on orbit."

The spacecraft’s Attitude Control System is maintaining initial attitude control. Fine attitude control should be achieved when thruster calibrations have been completed. After that, the ultra-precise science telescope will be locked onto the Gravity Probe B guide star, IM Pegasi, to within a range of 1/100,000th of a degree.

"All of us on the GP-B team are very grateful for the tremendous support we have received from NASA, Lockheed Martin, Boeing, and many others," said Francis Everitt, Gravity Probe B Principal Investigator at Stanford University. "We’re off to a fine start, but we now have a great sense of responsibility to make sure we do the science in the best possible way."

The spacecraft is being controlled from the Gravity Probe B Mission Operations Center, located at Stanford University. The Initialization & Orbit Checkout (IOC) phase of the Gravity Probe B mission is planned to last 45-60 days, after which the 12-month science data collection will begin. This will be followed by a two-month final calibration of the science instrument assembly.

NASA’s Gravity Probe B mission, also known as GP-B, will use four ultra-precise gyroscopes to test Einstein’s theory that space and time are distorted by the presence of massive objects. To accomplish this, the mission will measure two factors -- how space and time are warped by the presence of the Earth, and how the Earth’s rotation drags space-time around with it.

NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Gravity Probe B program for NASA’s Office of Space Science. Stanford University in Stanford, Calif., developed and built the science experiment hardware and operates the science mission for NASA. Lockheed Martin of Palo Alto, Calif., developed and built the GP-B spacecraft.

Steve Roy | MSFC
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/news/releases/2004/04-118.html

More articles from Physics and Astronomy:

nachricht Thin films from Braunschweig on the way to Mercury
19.10.2018 | Fraunhofer-Institut für Schicht- und Oberflächentechnik IST

nachricht Extremely close look at electron advances frontiers in particle physics
19.10.2018 | National Science Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>