Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lunar prospecting with Chandra

17.09.2003


Observations of the bright side of the Moon with NASA’s Chandra X-ray Observatory have detected oxygen, magnesium, aluminum and silicon over a large area of the lunar surface. The abundance and distribution of those elements will help to determine how the Moon was formed.


The Moon: Lunar prospecting with NASA’s Chandra X-ray Observatory



“We see X-rays from these elements directly, independent of assumptions about the mineralogy and other complications,” said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass, at a press conference at the “Four Years with Chandra” symposium in Huntsville, Alabama.

"We have Moon samples from the six widely-space Apollo landing sites, but remote sensing with Chandra can cover a much wider area,” continued Drake. “It’s the next best thing to being there, and it’s very fast and cost-effective.”


The lunar X-rays are caused by fluorescence, a process similar to the way that light is produced in fluorescent lamps. Solar X-rays bombard the surface of the Moon, knock electrons out of the inner parts of the atoms, putting them in a highly unstable state. Almost immediately, other electrons rush to fill the gaps, and in the process convert their energy into the fluorescent X-rays seen by Chandra.

According to the currently popular “giant impact” theory for the formation of the Moon, a body about the size of Mars collided with the Earth about 4.5 billion years ago. This impact flung molten debris from the mantle of both the Earth and the impactor into orbit around

-More-
the Earth. Over the course of tens of millions of years, the debris stuck together to form the Moon. By measuring the amounts of aluminum and other elements over a wide area of the Moon and comparing them to the Earth’s mantle, Drake and his colleagues plan to help test the giant impact hypothesis.

“One early result,” quipped Drake,“ is that there is no evidence for large amounts of calcium, so cheese is not a major constituent of the Moon.”

The same Chandra data have also solved a long-running mystery about X-rays from the dark side of the Moon, as reported by Brad Wargelin also of CfA. Wargelin discussed how data from the German Roentgen satellite (ROSAT) obtained in 1990 showed a clear X-ray signal from the dark side. These puzzling “dark-Moon X-rays” were tentatively ascribed to energetic electrons streaming away from the Sun and striking the lunar surface.

However, Chandra’s observations of the energies of individual X-rays, combined with simultaneous measurements of the number of particles flowing away from the Sun in the solar wind, indicate that the X-rays only appear to come from the Moon. In reality they come from much closer to home.

“Our results strongly indicate that the so-called dark Moon X-rays do not come from the dark side of the Moon,” said Wargelin. “The observed X-ray spectrum, the intensity of the X-rays, and the variation of the X-ray intensity with time, can all be explained by emission from Earth’s extended outer atmosphere, through which Chandra is moving.”

In the model cited by Wargelin and colleagues, collisions of heavy ions of carbon, oxygen and neon in the solar wind with atmospheric hydrogen atoms located tens of thousands of miles above the surface of Earth give rise to these X-rays. In the collisions, the solar ions capture electrons from hydrogen atoms. The solar ions then kick out X-rays as the captured electrons drop to lower energy states.

"This idea has been kicking around among a small circle of believers for several years supported by theory and a few pieces of evidence,” said Wargelin. “These new results should really clinch it."

NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Steve Roy | MSFC News Center
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/news/releases/2003/03-160.html
http://chandra.nasa.gov
http://chandra.harvard.edu

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Bacteria may travel thousands of miles through the air globally

25.03.2019 | Life Sciences

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019 | Life Sciences

Drug diversity in bacteria

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>