Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA’s XMM-Newton gains deep insights into the distant Universe

15.07.2003


Using XMM-Newton, astronomers have obtained the world’s deepest ‘wide screen’ X-ray image of the cosmos to date. Their observations show newly discovered clusters of galaxies and provide insights into the structure of the distant Universe…



Unlike grains of sand on a beach, matter is not uniformly spread throughout the Universe. Instead, it is concentrated into galaxies like our own which themselves congregate into clusters. These clusters are ‘strung’ throughout the Universe in a web-like structure. Astronomers have studied this large-scale structure of the nearby Universe but have lacked the instruments to extend the search to the large volumes of the distant Universe.

Thanks to its unrivalled sensitivity, in less than three hours, ESA’s X-ray observatory XMM-Newton can see back about 7000 million years to a cosmological era when the Universe was about half its present size, and clusters of galaxies more tightly packed. Marguerite Pierre, CEA Saclay, France, with a European and Chilean team, used this ability to search for remote clusters of galaxies and map out their distribution.


The work heralds a new era of studying the distant Universe. The optical identification of clusters shows only the galaxies themselves. However, X-rays show the gas in between the galaxies – which is where most of the matter in a cluster resides. This is like going from seeing a city at night, where you only see the lighted windows, to seeing it during the daytime, when you finally get to see the buildings themselves.

Tracking down the clusters is a painstaking, multi-step process. In tandem with XMM-Newton, the team uses the four-metre Canada-France-Hawaii Telescope (CFHT), on Mauna Kea, Hawaii, to take an optical snapshot of the same region of space. A tailor-made computer program combs the XMM-Newton data looking for concentrations of X-rays that suggest large, extended structures. These are the clusters and represent only about 10% of the detected X-ray sources (the others are mostly distant active galaxies).

When the program finds a cluster, it zooms in on that region and converts the XMM-Newton data into a contour map of X-ray intensity, which it then superimposes on the CFHT optical image. The astronomers use this to check if anything is visible within the X-ray emission. If it is, the work then shifts to one of the world’s largest telescopes, the European Southern Observatory (ESO) Very Large Telescope where the astronomers identify the individual galaxies in the cluster and take ‘red-shift’ measurements. These give a measurement of the cluster’s distance.

In this way, Pierre and colleagues are mapping the distribution of galaxy clusters of the distant Universe, for the first time in astronomy. "Galaxy clusters are the largest concentrations of matter in the Universe and XMM-Newton is extremely efficient at finding them," says Pierre.

Although the task is still a work in progress, first results seem to confirm that the number of clusters 7000 million years ago is little different from that of today. This behaviour is predicted by models of the Universe that expand forever and drive the galaxy clusters further and further apart.

Eventually, it will be possible for the team to use their results to determine whether the expansion of the Universe is accelerating, as indicated by some other recent observations, or decelerating, as traditionally thought.

Monica Talevi | alfa
Further information:
http://www.esa.int/export/esaCP/SEM6SHXO4HD_Expanding_0.html

More articles from Physics and Astronomy:

nachricht Physicists trap light in nanoresonators for record time
23.01.2020 | ITMO University

nachricht Colloidal Quantum Dot Photodetectors can now see further than before
21.01.2020 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>