Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists in Japan and US find new form of matter

14.07.2003


Analysis of data from Jefferson Lab’s CEBAF Large Acceptance Spectrometer supports the pentaquark discovery recently announced by the SPring-8 physics lab in Japan.


Physics Lab in Japan reports evidence for the Pentaquark; Jefferson Lab data supports discovery

A Five-quark state has been discovered, first reported by a group of physicists working at the SPring-8 physics lab in Japan. All confirmed particles known previously have been either combinations of three quarks (baryons, such as protons or neutrons) or two quarks (mesons such as pions or kaons). Although not forbidden by the standard model of particle physics, other configurations of quarks had not been found till now. The "pentaquark" particle, with a mass just above 1.5 GeV, was discovered in the following way. At the Spring-8 facility a laser beam is scattered from a beam of 8-GeV electrons circulating in a synchrotron racetrack. These scattered photons constitute a beam of powerful gamma rays, which were scattered from a fixed target consisting of carbon-12 atoms. The reaction being sought was one in which a gamma and a neutron inside a carbon nucleus collided, leaving a neutron, a K+ meson, and a K- meson in the final state. Efficient detectors downstream of the collision area looked for the evidence of the existence of various combinations of particles, including a short-lived state in which the K+ and the neutron had coalesced. In this case the amalgamated particle, or resonance, would have consisted of the three quarks from the neutron (two "down" quarks and one "up" quark) and the two quarks from the K+ (an up quark and a strange antiquark). The evidence for this collection of five quarks would be an excess of events (a peak) on a plot of "missing" masses deduced from K- particles seen in the experiment (http://www.aip.org/mgr/png/2003/193.htm).

The Laser-Electron Photon Facility (LEPS) at the SPring-8 machine (http://www.rcnp.osaka-u.ac.jp/Divisions/np1-b/index.html ) is reporting exactly this sort of excess at a mass of 1540 MeV with an uncertainty of 10 MeV. The statistical certainty that this peak is not just a fluctuation in the natural number of background events, and that the excess number of events is indicative of a real particle, is quoted as being 4.6 standard deviations above the background. This, according to most particle physicists, is highly suggestive of discovery. (Nakano et al., Physical Review Letters, upcoming article, probably 11 July 2003; text at www.aip.org/physnews/select; contact Takashi Nakano, nakano@rcnp.osaka-u.ac.jp)



Confirmation of this discovery comes quickly. A team of physicists in the US, led by Ken Hicks of Ohio University (hicks@ohio.edu, 740-593-1981) working in the CLAS collaboration at the Dept. of Energy’s Thomas Jefferson National Accelerator Facility, has also found evidence for the pentaquark. A photon beam (each photon being created by smashing the Jefferson Lab electron beam into a target and then measuring the energy of the scattered electron in order to determine the energy of the outgoing gamma) was directed onto a nuclear target. The photon collides with a deuteron target and the neutron-kaon (nK+) final state is studied in the CLAS detector (http://www.jlab.org/Hall-B/ ). The TJNAF result was announced at the Conference on the Intersections of Nuclear and Particle Physics (http://www.cipanp2003.bnl.gov ) held on May 19-24, 2003, at New York City. Stepan Stepanyan (stepanya@jlab.org, 757-269-7196) reported at this meeting that the mass measured for the pentaquark, 1.543 GeV (with an uncertainty of 5 MeV), is very close to the LEPS value. The statistical basis of the CLAS measurement is an impressive 5.4 standard deviations. (This result is about to be submitted to Physical Review Letters.) These results, together with the previous results from SPring-8, now provide firmer evidence for the existence of the pentaquark. The HERMES experiment at the DESY lab in Germany is also pursuing the pentaquark particle.

The discovery of a 5-quark state should be of compelling interest to particle physicists, and this might be only the first of a family of such states. Not only that but a new classification of matter, like a new limb in the family tree of strongly interacting particles: first there were baryons and mesons, now there are also pentaquarks. According to Ken Hicks, a member of both SPring-8 and Jefferson Lab experiments, this pentaquark can be considered as a baryon. Unlike all other known baryons, though, the pentaquark would have a strangeness value of S=+1, meaning that the baryon contains an anti-strange quark. Past searches for this state have all been inconclusive. Hicks attributes the new discovery to better beams, more efficient detectors, and more potent computing analysis power.

Linda Ware | EurekAlert!
Further information:
http://www.aip.org/mgr/png/2003/193.htm
http://www.jlab.org/

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>