Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Italian-French interferometer Virgo will be inaugurated on July 23rd

30.06.2003


This innovative instrument is aimed to hunt the elusive gravitational waves using extremely sophisticated technological solutions.



On July 23rd in Cascina, near Pisa (Italy), the new Virgo interferometer will be inaugurated. The innovative Virgo gravitational-wave-detector is the outcome of more than ten years of collaborative research and development between the National Institute of Nuclear Physics (Infn, Italy) and the National Scientific Research Centre (Cnrs, France). Letizia Moratti, Italy’s Minister for Education and Research, and Claudie Haigneré, the French Minister for Research and New Technologies, will participate in the inauguration ceremony. Journalists are also being invited to tour the scientific infrastructure and interview researchers.

The existence of gravitational waves is one of the most fascinating puzzles of modern physics. They are predicted by Albert Einstein’s general theory of relativity, and their existence has been demonstrated indirectly (Joseph. H. Taylor and Russell A. Hulse received the Nobel Prize for this discovery in 1993), but until now it has never been possible to observe them directly. "Gravitational waves are elusive perturbations of space-time curvature, produced by material bodies when accelerating, and can be considered similar to electromagnetic waves emitted by charged particles when they are accelerating. They are difficult to detect, however, because of the fact that they are extremely weak perturbations and, at the best, we can only hope to register those produced by huge phenomenona, like the explosion of a supernova, the interaction between a neutron star and a black hole, or the fusion of two neutron stars belonging to a binary system", says Enzo Iarocci, president of Infn.


"Virgo will reveal these gravitational waves using extremely sophisticated technological solutions. The measurement system is based on a laser beam that is split into two identical and perpendicular beams by a ’beam dividing’ mirror. Each beam goes into an optical hollow (known as a Fabry-Perot cavity) that holds two mirrors, one close by and the other positioned three kilometres away. The beams always travel in a vacuum. Each photon of the beams undergoes an average of 50 reflections before it exits the hollow and returns to the ’beam dividing’ mirror. This mirror then recombines the two beams and another device measures the interference between them. If a gravitational wave collides with the mirrors of the Fabry-Perot cavities, the distance between the mirrors changes and the interference of the two beams becomes disturbed. From the variation of the interference is possible to detect the signal produced by a gravitational wave", explains Adalberto Giazotto, Virgo’s scientific coordinator. To make the system work, it is also necessary to have very advanced mechanical equipment that allows a perfect sealing from the external environment and that prevents perturbations that could mask the passage of the wave. In proportion, the accuracy required to observe the existence of gravitational waves is analogous to the precision needed to measure the distance between the Earth and the Sun with an error lower than the diameter of an atom, but on a scale of billions of times smaller!

"Virgo is the result of a project begun in the 1980s and inspired by the ideas and pioneering development of the Infn team in Pisa, with the collaboration of the Cnrs group, at that time directed by Alain Brillet. Afterwards, other teams from Cnrs, In2P3 and Infn joined the original group of people: in particular, Lal Orsay, Espci Paris, Lapp Annecy, Ipn Lyon, Infn Naples, Infn Perugia, Infn’s National Laboratories of Frascati, Infn Roma 1 and Infn Florence-Urbino. The interferometer has already passed its initial running tests and within the next few months the working of all component systems will be verified. After that, it will begin recording data. The mirrors, made with nanometer precision, and its sophisticated mechanical systems make Virgo one of the most sensitive instruments in the global network, which also includes the American Ligo, the Anglo-German Geo and the Japanese Tama", says Adalberto Giazotto.

At the moment the Virgo project operates in the context of the Ego laboratory (European Gravitational Observatory), built on purpose by Infn and Cnrs. "The difficulty of intercepting the waves hypothesized by Einstein demonstrates that we still have much to understand about gravitational force, even though it has attracted mankind from time immemorial, since among all the forces it is the one that shows the most evident effects in everyday life", says Virgo director Filippo Menzinger.

Italy occupies a prominent position in the field of gravitational wave research and Infn has, among all the detectors in the world, those that permit the exploration of the largest frequency band of gravitational waves. Besides Virgo, two ultracryogenic bars are in active use: Nautilus (at the National Laboratories of Frascati, near Rome) and Auriga (at the National Laboratories of Legnaro, near Padua). These two detectors, which are kept at a temperature very close to absolute zero (-273 Celsius degrees) are thought to be the coldest large objects in the entire Universe. This peculiarity allows the bars to register weak signals from Space, minimizing the perturbations due to internal thermal agitation of molecules.


Filippo Menzinger, Ego Director
Phone: 39-050-752300 - 39-050-752511 - 39-335-732-1386
e-mail: filippo.menzinger@ego-gw.it
Adalberto Giazotto, Virgo Coordinator
Phone: 39-050-752559 - 39-347-371-8870
e-mail: adalberto.giazotto@pi.infn.it

Barbara Gallavotti, Head of the Infn Communication Office
Phone: 39-06-686-8162 - 39-335-660-6075
e-mail: Barbara.Gallavotti@Presid.infn.it

Filippo Menzinger | EurekAlert!
Further information:
http://www.ego-gw.it/brochure/
http://www.ego-gw.it/inauguration/
http://www.virgo.infn.it/

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>