Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origin Of New Moons Explained

15.05.2003


The ability to understand how small bodies such as moons switch from orbiting the Sun to orbiting a planet has long remained one of the outstanding problems of planetary science. A paper published in Nature on 15 May shows how this problem has been resolved using chaos theory, enabling scientists to predict where astronomers might search for new moons orbiting the giant planets.



In the last couple of years many small moons have been found orbiting the giant planets in our Solar System. For example, Jupiter now has 60 moons in total and Saturn more than 30. Astronomers believe that understanding the nature of these moons can reveal important clues about the early history of the planets. Such insights into understanding our own Solar System will help us understand how other solar systems came into being, and whether they might be favourable to life.

The moons can be divided into two groups - regular and irregular. Regular moons have a roughly circular orbit around their planet and are believed to have been formed there during the early history of the Solar System. Irregular moons have an orbit that is highly elliptical, orbiting the planet at a distance of many millions of miles. These are believed to have originally encircled the Sun and to have been subsequently ’’captured’’ by the planet they now orbit.


The discovery of these new moons has shaken our cherished ways of understanding our Solar System. In particular, the problem of satellite capture - the mechanism by which bodies switch from an orbit around the Sun to an orbit around the planet - remained outstanding. Secondary to this was the problem of why some moons have prograde orbits - revolving in the same direction as the planet - while the vast majority have retrograde orbits.

Stephen Wiggins and Andrew Burbanks, mathematicians at Bristol University, along with David Farrelly and Sergey Astakhov, theoretical chemists at Utah State University, were using chaos theory to understand the mechanics of chemical reactions. They realised that the approach they had been using in chemistry might also be applied to the problem of ’’capture’’. Furthermore, they thought that if they could solve the capture problem it might give them some insight into their chemistry problems.

Stephen Wiggins said: "When we started to look at the capture of irregular moons what we found was that no-one else was trying to understand this problem in three dimensions using chaos theory. Most work was focused on understanding the behaviour of these moons after they had been captured. So in an attempt to understand how a body orbiting the Sun could be brought in to an orbit around one of the giant planets we simulated the ’’switching’’ mechanism. We found that it was chaos that allowed the capture process to take place."

Using the mathematical equations they developed to explain the capture mechanism, the Bristol and Utah research groups present an explanation which not only agrees well with the observed locations of the known irregular moons, but also predicts new regions where moons could be located. The ability to predict where new moons might be found should make life much easier for astronomers who face the daunting task of searching huge regions of space for them.

The joint UK/US research team also showed that the moons initially captured into prograde orbits of moons are not only chaotic, but that they have a tendency to approach the region very close to the planet. This means that they have a greater chance of being eliminated by collisions with the inner giant moons or the planet, thereby explaining the far larger number of retrograde moons, especially around Jupiter.

This work shows that chaos-assisted capture may be a necessary, and quite general, predecessor of certain types of orderly and stable satellite orbits. END

Cherry Lewis | alfa

More articles from Physics and Astronomy:

nachricht NIST researchers boost microwave signal stability a hundredfold
26.05.2020 | National Institute of Standards and Technology (NIST)

nachricht ATLAS telescope discovers first-of-its-kind asteroid
25.05.2020 | University of Hawaii at Manoa

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

NIST researchers boost microwave signal stability a hundredfold

26.05.2020 | Physics and Astronomy

Complex genetic regulation of flowering time

26.05.2020 | Life Sciences

'One-way' electronic devices enter the mainstream

26.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>