Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Jersey Institute of Technology physicist uncovers new information about plutonium

09.05.2003


The storage of plutonium has long plagued scientists. “It is a dangerous metal and its long term storage must be done with special care so as not to harm the environment, ”said physicist Serguei Savrasov, Ph.D.



Finding a solution to this problem led Savrasov, an associate professor at New Jersey Institute of Technology (NJIT), and a team of researchers at Rutgers University and Los Alamos National Laboratories, to study how this metal reacts to heat, a natural condition of storage over time.

The team’s findings are published in the May 9, 2003 issue of Science.


Using a computer simulation, the researchers employed algorithms, to predict that when plutonium is heated, the volume of the plutonium lattice will change and the precise volume of the metal will collapse five percent. The simulation also predicted that heated plutonium deforms differently in various directions.

Other researchers working on the project were Xi Dai, Gabriel Kotliar and Elihu Abrahams, all of Rutgers University, and Albert Migliori and Hassel Ledbetter of Los Alamos National Laboratories, New Mexico. This simulation was the second part of an effort by this team. The April, 2001 issue of Nature reported the findings of several members of this group (S. Savrasov, G. Kotliar, and E. Abrahams). Their findings explored the anomalous expansion of plutonium.

Support for the project included a National Science Foundation Career Development Grant for $400,000, awarded to Savrasov, and a Department of Energy Division of Basic Energy Sciences grant for $300,000 awarded to Kotliar, Abrahams and Sasvrasov.

The new computer simulation by members of the same group plus others focused on why the metal shrinks. “There is an exciting and unusual interplay between the electrons and the plutonium lattice dynamic which is responsible for these unusual properties and why the volume collapses,” said Savrasov.

“It is important for the scientists to do the experiment as a simulation because plutonium is a toxic and radioactive element. It is dangerous for scientists to work with it directly,” added Savrasov.

The computer simulation showed the anisotropic elastic properties of plutonium. “Most metals are isotropic which means that the elastic properties are the same when you are stretching them,” Savrasov said. “But plutonium is anisotropic. When you stretch it in some directions, the metal is very soft. But when you pull it in other directions, it behaves like a typical metal, and is hard to stretch.”

The computer simulation done by the researchers modeled the properties of the plutonium lattice. “When you heat plutonium, it shows six structures and you can see it undergo these transitions,” said Savrasov.

The team modeled two of the six high temperature transitions. “When the plutonium is heated, it acts like popcorn in a microwave,” said Savrasov. “It pops up and increases 30 percent of its size and then after you heat it further, the metal collapses. This behavior is very unusual and unexpected for a metal.”

Savrasov said that such information hopefully will aid material scientists and engineers who are responsible for storing the metal. “Of course scientists know what they are doing, but our research helps them understand more about this metal’s basic properties,” Savrasov said.


Additional Contact:
Joseph Blumberg
Manager, Science Communications
Rutgers University
(732) 932-7084, x 652
blumberg@ur.rutgers.edu

Sheryl Weinstein | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>