Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside researchers’ discovery of electrostatic spin topples century-old theory

03.04.2003


New physical phenomenon will likely impact atomic physics, chemistry and nanotechnology


UC Riverside researchers Anders Wistrom and Armik Khachatourian first observed the electrostatic rotation in static experiments that consisted of three metal spheres suspended by thin metal wires. When a DC voltage was applied to the spheres, the spheres began to rotate until the stiffness of the suspending wires prevented further rotation. (Photo credit: Anders Wistrom.)



In a discovery that is likely to impact fields as diverse as atomic physics, chemistry and nanotechnology, researchers have identified a new physical phenomenon, electrostatic rotation, that, in the absence of friction, leads to spin. Because the electric force is one of the fundamental forces of nature, this leap forward in understanding may help reveal how the smallest building blocks in nature react to form solids, liquids and gases that constitute the material world around us.

Scientists Anders Wistrom and Armik Khachatourian of University of California, Riverside first observed the electrostatic rotation in static experiments that consisted of three metal spheres suspended by thin metal wires, and published their observations in Applied Physics Letters. When a DC voltage was applied to the spheres they began to rotate until the stiffness of the suspending wires prevented further rotation. The observed electrostatic rotation was not expected and could not be explained by available theory.


Wistrom and Khachatourian designed the study with concepts they had developed earlier. "Experimental and theoretical work from our laboratory suggested that the cumulative effect of electric charges would be an asymmetric force if the charges sitting on the surface of spheres were asymmetrically distributed," said Wistrom. "In the experiments, we could control the charge distribution by controlling the relative position of the three spheres."

Yet, for more than 200 years, researchers have known only about the push and pull of electric forces between objects with like or unlike charges. Since as early as 1854, when Thomson, later to become Lord Kelvin, theorized about an electric potential surrounding charged objects, scientists have concentrated on understanding how electric and magnetic phenomena are related.

"While Thomson’s hypothesis of electric potential has brought enormous benefits when it comes to modern electromagnetic technologies, we now realize that his definition of electric potential was not exact," said Wistrom. "The effects are particularly noticeable when the spheres are very close to one another." (Electric potential is the ratio of the work done by an external force in moving a charge from one point to another divided by the magnitude of the charge.)

Indeed, the general applicability of Thomson’s theory has not been tested experimentally or theoretically until now. In the Journal of Mathematical Physics, Wistrom and Khachatourian recently published the breakthrough that provides the theoretical underpinnings for electrostatic rotation. "It is very satisfying to learn that electrostatic rotation can be predicted by the simple laws of voltage and force that date back at least 200 years," Wistrom said.

He added, "This is curiosity driven research that starts with a simple question and ultimately leads to findings that will likely have impacts across many fields of science and engineering. Because electrostatic rotation without friction leads to spin, we can only speculate how this discovery will provide new approaches to aid the investigation of fundamental properties of matter."

Spin is used in quantum mechanics to explain phenomena at the nuclear, atomic, and molecular domains for which there is no concrete physical picture. "So the discovery of electrostatic rotation and the identification of electrostatic spin as a natural phenomenon opens up an entirely new field of inquiry with the potential for significant advances," Wistrom said.

Iqbal Pittalwala | UCR
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=548
http://www.engr.ucr.edu/chemical/
http://www.engr.ucr.edu/faculty/chemenv/anderswistrom.html

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes

17.07.2018 | Life Sciences

Electronic stickers to streamline large-scale 'internet of things'

17.07.2018 | Information Technology

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>