Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke physicists reveal new insights into stresses between sliding grains

27.02.2003


Densely packed granular particles that inch past each other under tension interact in ways more complex and surprising than previously believed, two Duke University physicists have discovered.



Their observations, described in the Thursday, February 27, 2003, issue of the research journal Nature, could provide new insight into such geophysical processes as the behavior of a slowly moving glacier or an active earthquake fault, said Robert Behringer, a Duke physics professor who is one of the Nature article’s authors. The physicists’ findings could also have implications for industrial problems, such as how the contents of a hopper holding granular materials such as grain or coal flow, he added.

By using plastic beads made of a material that affects light differently when under stress, Behringer and graduate student Robert Hartley have for the first time shown what happens to grains in a granular network subjected to frictional or "shear" forces that may build slowly.


Their work, supported by the National Science Foundation and NASA, constitutes a new scientific view of phenomena that are difficult to visualize or measure, and for which there is no established theory, Behringer said. Granular materials interest scientists particularly because the materials behave in some ways like solids and in others like liquids.

According to the scientists, tensions in granular materials obviously increase when densely packed grains in close contact with each other seek to move in opposite directions. But nothing apparent happens to these grain collections until forces build enough to cause the grains to begin slipping past each other, the authors noted in their Nature report.

Physicists from the 1770s to recent times had believed that after sliding begins, frictional forces between the grains remain constant even as sliding speeds slowly increase. "This is still routinely taught in introductory physics courses," Behringer said in an interview.

Various experiments, particularly since the early 1980s, however, have suggested that frictional forces between the grains do not remain the same but instead appear to decrease as sliding speeds inch upwards, Behringer added. Such a weakening is no surprise, according to Behringer. "With increasing speed, the contacts between individual grains should be weakening," he said.

The surprises came when Hartley and Behringer explored in unprecedented detail what is happening within such systems. Their article illustrated how they were able to "zoom in uniquely" on individual beads, which served as laboratory surrogates for granular particles in nature.

In their experiments, they studied how the plastic beads interacted in a confined space between an outer ring and an inner rotating wheel. Using that apparatus, they demonstrated that built-up frictional stresses are actually transferred into jagged networks of "force chains" that some contacting grains develop within the tight networks.

So, although forces between individual grains drop overall as sliding speeds grow, the scientists found that the force chains reorganize and proliferate at the same time to sop up what are increasing stresses to the system. "The force network increases in strength with increasing speed," Behringer said.

In these experiments, speeds are relatively slow -- the fastest being one revolution of the wheel every 30 seconds.

Another surprise occurred when the researchers halted the grain interaction by stopping the rotating wheel. With the tightly packed grains no longer sliding past one another but instead remaining in constant contact, forces between individual grains should freeze in place, Behringer said.

Instead, the researchers found that stresses within the force chains began dropping, rapidly initially and slowly thereafter over periods of many hours. "Those contacts should remain exactly as they are over time. But nature does something different," he said.

These surprises "indicate that newly found and possibly subtle processes are at work that make collections of grains behave in a way that appears to be the reverse of what would be expected," he added.

"Our observations have important implications for modeling the internal stress states of geophysical systems," Behringer said. Examples might include California’s notorious San Andreas Fault, in which two rock faces move in opposite directions deep underground. In some places, the rock faces slowly creep past each other. In others, the rock faces bind, causing pressures to build up until the faces suddenly snap apart in an earthquake that is sometimes catastrophic.

There may also be lessons for the design of industrial devices, such as hoppers, he said. In the flow of coal or of wheat in hoppers, "there could be a large range of velocities in different parts of the hopper, from very fast near its outlet to very slow at the top," he said. "The stresses are likely to behave very differently for these different flow speeds."

Hoppers have been known to self-destruct because of hard to decipher changes inside.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Physics and Astronomy:

nachricht Convenient location of a near-threshold proton-emitting resonance in 11B
29.05.2020 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht A special elemental magic
28.05.2020 | Kyoto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>