Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Michigan researchers achieve quantum entanglement of three electrons

27.02.2003


The quantum entanglement of three electrons, using an ultrafast optical pulse and a quantum well of a magnetic semiconductor material, has been demonstrated in a laboratory at the University of Michigan, marking another step toward the realization of a practical quantum computer. While several experiments in recent years have succeeded in entangling pairs of particles, few researchers have managed to correlate three or more particles in a predictable fashion.



The results were presented in an article on Nature Materials’ web site on February 23 and will appear in the March 4 issue of Nature Materials, titled "Optically induced multispin entanglement in a semiconductor quantum well." Authors of the paper are Jiming Bao, Andrea V. Bragas, Jacek K. Furdyna (University of Notre Dame), and Roberto Merlin.

Entanglement, which is essential to the creation of a quantum computer, is one of the mysterious properties of quantum mechanics that contradicts the notions of classical realism. Quantum computers will be able to perform highly complex tasks that would be impossible for a classical computer, at great speed.


Briefly, entanglement describes a particular state of a set of particles of energy or matter for which correlations exist, so that the particles affect each other regardless of how far apart they are. Einstein called it "spooky action at a distance." We know that we must be able to harness entanglement in order to develop the quantum gates necessary for storing and processing information in practical quantum computers. These devices will offer enormously enhanced computing power that would permit extremely fast ways to solve certain mathematical problems, such as the factorization of large numbers.

The Michigan team, which has been working on the problem for several years, used ultrafast (50-100 femtosecond) laser pulses and coherent techniques to create and control spin-entangled states in a set of non-interacting electrons bound to donors in a CdTe quantum well. The method, which relies on the exchange interaction between localized excitons and paramagnetic impurities, could in principle be used to entangle an arbitrarily large number of spins.

In the presence of an external magnetic field, a resonant laser pulse creates localized excitons (bound electron-hole pairs) of radius ~ 0.005 microns in the CdTe well. Electrons bound to donor impurities within that radius feel the presence of the exciton in such a way that they became entangled after the exciton is gone. The process involves resonant Raman transitions between Zeeman split spin states. In the experiments, the signature of entanglement involving m electrons is the detection of the mth-harmonic of the fundamental Zeeman frequency in the differential reflectivity data.

"The community is trying various approaches to achieve controllable interactions between qubits. We’ve seen a variety of proposed solutions from atomic physicists involving trapped ions and atoms and even ’flying qubits’ based on light," said Merlin. "Solutions based on semiconductor technology, like ours for example, may well hold more promise for practical implementation when combined with advances in nanotechnology."

The experiments have so far involved a large ensemble of sets of 3 electrons. "Our procedure is potentially set-specific and scalable, which means that it shows definite promise for quantum computing applications," Merlin said. Cryptography is expected to be one of the first such applications.

The research was conducted at OPIL (Optical Physics Interdisciplinary Laboratory), a laboratory of the FOCUS (Frontiers in Optical Coherent and Ultrafast Science) Center of the University of Michigan and funded by ACS Petroleum Research Fund, NSF (National Science Foundation) and the AFOSR (Air Force Office of Scientific Research) through the MURI (Multidisciplinary University Research Initiative) program.

To read the entire paper, go to http://dx.doi.org/10.1038/Nmat839 or send an email to merlin@umich.edu. For more information about the University of Michigan’s FOCUS Center, see http://www.umich.edu/~focuspfc/main.html.



Contact: Judy Steeh
Phone: 734-647-3099
E-mail: jsteeh@umich.edu


The University of Michigan
News Service
412 Maynard
Ann Arbor, MI 48109-1399

Judy Steeh | EurekAlert!
Further information:
http://www.umich.edu/~newsinfo
http://www.umich.edu/news
http://www.umich.edu/~focuspfc/main.html

More articles from Physics and Astronomy:

nachricht How to melt gold at room temperature
20.11.2018 | Chalmers University of Technology

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Mutation that causes autism and intellectual disability makes brain less flexible

20.11.2018 | Life Sciences

The sweet side of reproductive biology

20.11.2018 | Life Sciences

Fading stripes in Southeast Asia: First insight into the ecology of an elusive and threatened rabbit

20.11.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>