Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NMR - The movie

25.02.2003


Ten construction workers will often get a job done faster than one. But in digging a deep well, for instance, ten workers are a waste of human resources: the diggers can’t work simultaneously, as the second worker isn’t able to start digging until the first one has finished, and so on.



A similar challenge is encountered by scientists who study the structure and dynamics of molecules using nuclear magnetic resonance (NMR) spectroscopy. This technique serves as an essential tool in understanding numerous molecules – including proteins, nucleic acids and active pharmaceuticals – in their natural surroundings. It does this by exposing them to electromagnetic radiation and studying the dispersion patterns of the electromagnetic waves that hit the molecules. However, to obtain a full NMR picture of such complex molecules one needs to perform numerous measurements that are based on the same “serial” principle as well digging: hundreds or thousands of one-dimensional scans need to be performed one after the other; these scans need then to be combined to create a unified multidimensional picture of the molecule. While a single scan may take a fraction of a second, multidimensional procedures may last several hours or even days.

A team led by Prof. Lucio Frydman of the Weizmann Institute’s Chemical Physics Department has now found a way to perform multidimensional NMR with a single scan. The new method, described in the December 2002 issue of the Proceedings of the National Academy of Sciences USA (PNAS), is expected to significantly speed up molecular studies routinely performed in diverse fields.


The method “slices” a sample into numerous thin slices and then simultaneously performs all the measurements required by multidimensional NMR – lasting a fraction of a second each – on every one of these slices. The system then integrates all the measurements according to their precise location, generating an image that amounts to a multi-dimensional spectrum from the entire sample. Essentially, Prof. Frydman has found a way to allow NMR “well diggers” to work simultaneously.

Scientists will now be able to observe rapid changes taking place in molecules, such as the folding of proteins. In this sense, the new method developed by Prof. Frydman amounts to a transition from taking still “NMR photos” to recording “NMR movies.”

Prof. Frydman’s method may also have a great impact on the design of new drugs and the development of catalysts, particularly in the emerging fields of combinatorial chemistry and of metabonomics.


Contributing to this research were Dr. Adonis Lupulescu of the Chemical Physics Department and Dr. Tali Scherf of Chemical Services at the Weizmann Institute of Science.

Prof. Lucio Frydman’s research is supported by the Abraham and Sonia Rochlin Foundation, the Henri Gutwirth Fund for Research, the Philip M. Klutznick Fund, the late Ilse Katz, Switzerland, and Minerva Stiftung Gesellschaft fuer die Forschung m.b.H.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Physics and Astronomy:

nachricht New method gives microscope a boost in resolution
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A new 'spin' on kagome lattices
10.12.2018 | Boston College

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>