Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NMR - The movie

25.02.2003


Ten construction workers will often get a job done faster than one. But in digging a deep well, for instance, ten workers are a waste of human resources: the diggers can’t work simultaneously, as the second worker isn’t able to start digging until the first one has finished, and so on.



A similar challenge is encountered by scientists who study the structure and dynamics of molecules using nuclear magnetic resonance (NMR) spectroscopy. This technique serves as an essential tool in understanding numerous molecules – including proteins, nucleic acids and active pharmaceuticals – in their natural surroundings. It does this by exposing them to electromagnetic radiation and studying the dispersion patterns of the electromagnetic waves that hit the molecules. However, to obtain a full NMR picture of such complex molecules one needs to perform numerous measurements that are based on the same “serial” principle as well digging: hundreds or thousands of one-dimensional scans need to be performed one after the other; these scans need then to be combined to create a unified multidimensional picture of the molecule. While a single scan may take a fraction of a second, multidimensional procedures may last several hours or even days.

A team led by Prof. Lucio Frydman of the Weizmann Institute’s Chemical Physics Department has now found a way to perform multidimensional NMR with a single scan. The new method, described in the December 2002 issue of the Proceedings of the National Academy of Sciences USA (PNAS), is expected to significantly speed up molecular studies routinely performed in diverse fields.


The method “slices” a sample into numerous thin slices and then simultaneously performs all the measurements required by multidimensional NMR – lasting a fraction of a second each – on every one of these slices. The system then integrates all the measurements according to their precise location, generating an image that amounts to a multi-dimensional spectrum from the entire sample. Essentially, Prof. Frydman has found a way to allow NMR “well diggers” to work simultaneously.

Scientists will now be able to observe rapid changes taking place in molecules, such as the folding of proteins. In this sense, the new method developed by Prof. Frydman amounts to a transition from taking still “NMR photos” to recording “NMR movies.”

Prof. Frydman’s method may also have a great impact on the design of new drugs and the development of catalysts, particularly in the emerging fields of combinatorial chemistry and of metabonomics.


Contributing to this research were Dr. Adonis Lupulescu of the Chemical Physics Department and Dr. Tali Scherf of Chemical Services at the Weizmann Institute of Science.

Prof. Lucio Frydman’s research is supported by the Abraham and Sonia Rochlin Foundation, the Henri Gutwirth Fund for Research, the Philip M. Klutznick Fund, the late Ilse Katz, Switzerland, and Minerva Stiftung Gesellschaft fuer die Forschung m.b.H.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Physics and Astronomy:

nachricht A new path for electron optics in solid-state systems
15.07.2020 | ETH Zurich Department of Physics

nachricht Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications
13.07.2020 | Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new path for electron optics in solid-state systems

A novel mechanism for electron optics in two-dimensional solid-state systems opens up a route to engineering quantum-optical phenomena in a variety of materials

Electrons can interfere in the same manner as water, acoustical or light waves do. When exploited in solid-state materials, such effects promise novel...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

When Concrete learns to pre-stress itself

15.07.2020 | Architecture and Construction

New lithium battery charges faster, reduces risk of device explosions

15.07.2020 | Power and Electrical Engineering

A new path for electron optics in solid-state systems

15.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>