Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nearly-Naked Stars Boost the Pulse of Asteroseismology

10.02.2003


What goes on inside the heart of a star? Astronomers have been developing theories about stars’ inner workings for decades, but evidence to confirm the details of those theories has been sparse.


Figure1: A 5x5 arcminute CCD image of the prototype gravity-mode pulsating subdwarf B star, PG1716+426, and nearby comparison stars. North is up and East is to the left. The subdwarf B star pulsator is the brightest star in the northeast quadrant. The image was taken through an R filter at the University of Arizona Mt. Bigelow 1.6 m telescope and is one of hundreds used to measure the light curve of the star.
Photo Credit: Courtesy of Elizabeth Green of Steward Observatory at the University of Arizona and NSF.



In research supported by NSF, University of Arizona astronomer Elizabeth Green and colleagues have found a new subset of "nearly-naked" stars that dim and brighten due to pulses in their cores. The stars, which may help unlock secrets of advanced stages of stellar evolution, are described in the January 20 Astrophysical Journal Letters.

Chemical and physical changes inside star cores cause the light they emit to pulsate, becoming brighter and dimmer in slowly changing patterns. Analysis of these pulsations would give scientists a better of idea of the processes going on inside stars and help them understand how they change from one type to another. Until now, though, astronomers have been frustrated by the faintness of the pulses.


One problem is that most star cores are wrapped in a thick envelope of hydrogen gas that obscures any pulses that might occur. In 1997, astronomers thought they had found a new approach to the problem when they discovered a new class of pulsating stars, called subdwarf B stars. These stars are very hot evolved stars that have lost that outer envelope and are essentially "naked" cores. However, previous observations of the hottest subdwarf B stars revealed that their pulsations are weak and generally occur only minutes apart, making them hard to measure with conventional telescopes.

Astronomer Elizabeth Green, working with undergraduates from the University of Arizona, has been observing 80 cooler subdwarf B stars and is now releasing eye-opening results. Using a telescope operated by the university’s Steward Observatory, the group found that 20 of the cooler stars commonly pulsate at relatively long intervals of about one hour, and that each star also has several pulse patterns. Green’s collaborators, researchers Gilles Fontaine of the University of Montreal, and Mike Reed of Southwest Missouri State, say the processes causing the pulses are not yet understood, but that they originate in much deeper layers of the star than pulses in the hotter subdwarf B observed before.

Because they are abundant and easier to observe, the newly discovered stars should expand opportunities for researchers around the world to carry out asteroseismology. Using the multiple pulses, researchers will study the hearts of stars much as seismologists on earth study earthquakes to determine the Earth’s interior structure.

Most of what scientists know about stellar interiors is based on theory, but there are competing explanations of why stars like our sun evolve from one type to another. Now that models of star cores will have to explain not just one but several patterns of pulsation in a single star, Green says the new data will narrow the field of theories and help researchers better predict the eventual fate of stars like our own Sun

Roberta Hotinski | National Science Foundation

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
01.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

Im Focus: NASA observes large Saharan dust plume over Atlantic ocean

NASA-NOAA's Suomi NPP satellite observed a huge Saharan dust plume streaming over the North Atlantic Ocean, beginning on June 13. Satellite data showed the dust had spread over 2,000 miles.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, Colin Seftor, an atmospheric scientist, created an animation of the dust and aerosols from the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

First exposed planetary core discovered

01.07.2020 | Physics and Astronomy

Energy-saving servers: Data storage 2.0

01.07.2020 | Power and Electrical Engineering

Laser takes pictures of electrons in crystals

01.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>