Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster than ever seen before – speeding electrons will be snapped by new UK attosecond ‘camera’

16.01.2003


Ultrafast lasers helping to make some of the shortest pulses of light ever seen in the UK will be at the heart of a new system to capture the movements of electrons as they whizz around the nucleus of atoms.



A UKP3.5 million research grant from the UK Research Councils’ Basic Technology Programme announced today has been awarded to a team of scientists to develop and build the first attosecond laser system capable of freeze-framing and controlling the motion of electrons.

Researchers hope that the attosecond system will reveal fundamental insights into atomic behaviour and may eventually lead to new applications in molecular and surface sciences, nano-scale and biological structures.


Because electrons are so light they move extremely quickly and their motion is measured in units of time called attoseconds. One attosecond is one billion-billionth of a second, and an electron orbits a hydrogen atom in just 24 attoseconds, or 24 billion-billionths of a second.

To capture the electron in motion the researchers will build a system to produce pulses of light lasting attoseconds. These pulses will then be strobed on to atoms in order to ‘freeze’ their electrons in motion.

“If you want to see a bullet ripping through a tomato you need to have a microsecond strobe to freeze the motion of the projectile,” said Dr John Tisch, Project Manager based at Imperial College London. “We want to see electron motion and for that we need attosecond resolution. Without attosecond probes, the electron motion would be just a ‘blur’.”

Electrons are behind all the fundamental processes in chemistry, biology and material sciences as they make all the ‘bonds’ in matter, joining atoms together to form larger systems like molecules.

“Changes in materials - be they molecules, solids or living tissue - can all be traced back to rearrangement of these bonding electrons,” said Professor Jon Marangos, Project Coordinator based at Imperial. “Attosecond pulses will give us the ability, for the first time, to measure and probe these very fast changes and shed new light on the dynamic processes that occur on this unexplored timescale.”

Currently the shortest measured laser pulse is around 4 femtoseconds (4000 attoseconds) and the shortest light pulses measured are around 600 attoseconds.

The planned length of the pulses in the UK attosecond system, generated using a technique known as high harmonic generation, will be about 200 attoseconds.

The award is made to a collaboration of groups led by Dr Tisch and Professor Marangos from the Department of Physics at Imperial College London.

The group comprises researchers from Imperial, Kings College London, and the universities of Oxford, Reading, Birmingham, Newcastle and the Rutherford Appleton Laboratory, Oxfordshire.

The groups will each build separate components and the final working system will be assembled and operated at Imperial College by 2005.

In total over 30 scientists are expected to contribute to the project, which will last for four years.

The overall cost of the project is UKP3.5 million, approximately half to be spent on equipment and half for research staff.

Tom Miller | alfa

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>