Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space is big, but not big enough

26.09.2002


According to Douglas Adams, in his famous book The Hitch-Hikers Guide to the Galaxy, space is big. However, it seems near-Earth space is not big enough. In December 2001, the Space Shuttle pushed the International Space Station away from a discarded Russian rocket booster that was due to pass uncomfortably close. Space litter is a growing problem but smarter satellite design may help in the future.



From the beginning of the space era, satellites and deep-space probes have populated the Solar System. There are now a huge number of satellites orbiting the Earth, for different purposes including Earth observation, weather forecasting, telecommunications, military applications, and astronomy. The space around Earth is therefore becoming more and more crowded. Aside from the aspect of `space traffic control`, there is the question of what to do with space litter.

ESA`s European Space Operations Centre (ESOC) in Darmstadt, Germany, tracks space litter. It estimates that over 23 000 objects larger than 10 centimetres have been launched from Earth. Of these, about 7500 are still orbiting - only a very small proportion of them (6%) is operational. Half of all the objects are inoperable satellites, spent rocket stages, or other large space litter; the remaining 44% is debris from explosions and accidents in space. To make things worse, there are an estimated 70 000 to 120 000 fragments smaller than 1 centimetre and the amount of space debris increases by about 5% every year.


Tiny fragments, such as paint flecks, moving at very high velocities of around 6 kilometres per second can create problems for the spacecraft and for astronaut. One way to lower the threat is to remove satellites from orbit at the end of their working lives. If we force satellites down through the Earth`s atmosphere, they burn up. However, this is more complicated if the satellite is so large that parts of it are liable to survive reentry and strike the ground. This is the case for some Earth observation satellites, for example, which are very big and heavy. When removing a (dead) satellite from orbit is too difficult, it is simply left in orbit.

However ESA is developing a new technology for its Darwin mission. This technology may allow smaller, more easily disposable satellites to replace often enormous relics in the future which would improve spacecraft control.

Darwin will use a flotilla of six 2-metre-diameter telescopes, flying in tight formation, to simulate a single telescope up to 250 metres across. The new technology being developed for Darwin allows the flotilla of spacecraft to control their mutual position with extremely high accuracy. In the case of Darwin, this enables you to analyse the atmospheres of very far-away Earth-like planets with high precision and detect the chemical signatures of life. Once this technology is developed, this could also find other applications: miniaturised versions of such technology could replace large, traditional satellites. "Imagine using an array of 20-centimetre telescopes. They would be small, light and easy to mass-produce, so cheap to manufacture," says Malcolm Fridlund, ESA`s Project Scientist for the Darwin mission. They would see objects just as sharply as traditional satellites, if not better, and, at the end of their mission, scientists could ensure that they burn up in Earth`s atmosphere like shooting stars. This way we keep space cleaner.

Another improvement is to position satellites further away, to reduce `traffic jams` in near-Earth space. "This is a better position for Earth observation anyway," says Fridlund, "Because in low-Earth-orbit the satellite orbits every 90 minutes, it is only over each spot on Earth for a short period of time. In geostationary orbit, however, the satellite would be looking at one whole hemisphere continuously, so you could just point the array to wherever you are interested." Moreover, we could use Darwin`s formation-flying technology to equip every satellite with a collision-avoidance system. Unrelated satellites would communicate with their neighbours and take corrective action if they began to drift together.

Of course, nothing will completely remove the threat of space litter. However, if we can use advanced technology to remove unwanted hardware from orbit, space will definitely become safer.

Monica Talevi | alfa
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht ATLAS telescope discovers first-of-its-kind asteroid
25.05.2020 | University of Hawaii at Manoa

nachricht New gravitational-wave model can bring neutron stars into even sharper focus
22.05.2020 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>