Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M instrument shows what planet Mercury is made of

07.07.2008
By measuring the charged particles in the planet Mercury's magnetic field, a University of Michigan sensor enabled the first observations about the surface and atmospheric composition of the closest world to the sun.

"We now know more about what Mercury's made of than ever before," said Thomas Zurbuchen, a professor in the departments of Atmospheric, Oceanic and Space Sciences and Aerospace Engineering. "Holy cow, we found way more than we expected!"

Zurbuchen is project leader of the Fast Imaging Plasma Spectrometer (FIPS), a soda-can sized sensor on board the MESSENGER spacecraft, which performed the first of three scheduled Mercury flybys in January. A paper on FIPS' results from this flyby is published in the July 4 edition of Science.

Since the Mariner 10 spacecraft's 1975 discovery of Mercury's magnetic field, scientists have speculated about how this magnetic field and the solar wind interact with the planet's surface and exosphere, or thin atmosphere.

FIPS detected silicon, sodium, sulfur and even water ions around Mercury. Ions are atoms or molecules that have lost electrons and therefore have an electric charge.

Because of the quantities of these molecules that scientists detected in Mercury's space environment, they surmise that they were blasted from the surface or exosphere by the solar wind. The solar wind is a stream of charged particles emanating from the sun. It buffets Mercury, which is 2/3 closer to the sun than the Earth, and it causes particles from Mercury's surface and atmosphere to sputter into space. FIPS measured these sputtered particles.

"It's like we did a forensic analysis of Mercury," Zurbuchen said. "This flyby got the first-ever look at surface composition.

"The Mercury magnetosphere is full of many ionic species, both atomic and molecular, and in a variety of charge states. What is in some sense a Mercury plasma nebula is far richer in complexity and makeup than the Io plasma torus in the Jupiter system."

Io is a volcanically active moon of Jupiter that is often considered one of the most exciting space environments, Zurbuchen said. Images and other measurements made by MESSENGER suggest that Mercury's surface composition was determined at least in part by volcanic processes.

FIPS was built at the University of Michigan by more than 10 U-M engineers and technicians with help from more than 50 students.

The paper is called "MESSENGER Observations of the Composition of Mercury's Ionized Exosphere and Plasma Environment."

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu
http://messenger.jhuapl.edu/news_room/index.php
http://www.engin.umich.edu

More articles from Physics and Astronomy:

nachricht Extremely close look at electron advances frontiers in particle physics
18.10.2018 | National Science Foundation

nachricht Blue phosphorus -- mapped and measured for the first time
16.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>