Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence of massive asteroid impact on Mars supported by computer simulations

27.06.2008
The dramatic differences between the northern and southern hemispheres of Mars have puzzled scientists for 30 years.

One of the proposed explanations--a massive asteroid impact--now has strong support from computer simulations carried out by two groups of researchers. Planetary scientists at the University of California, Santa Cruz, were involved in both studies, which appear in the June 26 issue of Nature.

"It's a very old idea, but nobody had done the numerical calculations to see what would happen when a big asteroid hits Mars," said Francis Nimmo, associate professor of Earth and planetary sciences at UCSC and first author of one of the papers.

Nimmo's group found that such an impact could indeed produce the observed differences between the Martian hemispheres. The other study used a different approach and reached the same conclusion. Nimmo's paper also suggests testable predictions about the consequences of the impact.

The so-called hemispheric dichotomy was first observed by NASA's Viking missions to Mars in the 1970s. The Viking spacecraft revealed that the two halves of the planet look very different, with relatively young, low-lying plains in the north and relatively old, cratered highlands in the south. Some 20 years later, the Mars Global Surveyor mission showed that the crust of the planet is much thicker in the south and also revealed magnetic anomalies present in the southern hemisphere and not in the north.

"Two main explanations have been proposed for the hemispheric dichotomy--either some kind of internal process that changed one half of the planet, or a big impact hitting one side of it," Nimmo said. "The impact would have to be big enough to blast the crust off half of the planet, but not so big that it melts everything. We showed that you really can form the dichotomy that way."

Nimmo's group includes UCSC graduate student Shawn Hart, associate researcher Don Korycansky, and Craig Agnor of Queen Mary University, London. The other paper is by Margarita Marinova and Oded Aharonson of the California Institute of Technology and Erik Asphaug, professor of Earth and planetary sciences at UCSC.

The quantitative model used by Nimmo's group calculated the effects of an impact in two dimensions. Asphaug's group used a different model to calculate impacts in three dimensions, but with lower resolution (i.e., less detail in the simulation).

"The two approaches are very complementary; putting them together gives you a complete picture," Nimmo said. "The two-dimensional model provides high resolution, but you can only look at vertical impacts. The three-dimensional model allows nonvertical impacts, but the resolution is lower so you can't track what happens to the crust."

Most planetary impacts are not head-on, Asphaug said. His group found a "sweet spot" of impact conditions that result in a hemispheric dichotomy matching the observations. Those conditions include an impactor about one-half to two-thirds the size of the Moon, striking at an angle of 30 to 60 degrees.

"This is how planets finish their business of formation," Asphaug said. "They collide with other bodies of comparable size in gargantuan collisions. The last of those big collisions defines the planet."

According to Nimmo's analysis, shock waves from the impact would travel through the planet and disrupt the crust on the other side, causing changes in the magnetic field recorded there. The predicted changes are consistent with observations of magnetic anomalies in the southern hemisphere, he said.

In addition, new crust that formed in the northern lowlands would be derived from deep mantle rock melted by the impact and should have significantly different characteristics from the southern hemisphere crust. Certain Martian meteorites may have originated from the northern crust, Nimmo said. The study also suggests that the impact occurred around the same time as the impact on Earth that created the Moon.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>