Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New metamaterial proves to be a 'perfect' absorber of light

02.06.2008
Resonators couple individually to electric and magnetic fields to absorb all incident radiation

A team of scientists from Boston College and Duke University has developed a highly-engineered metamaterial capable of absorbing all of the light that strikes it – to a scientific standard of perfection – they report in the latest edition of Physical Review Letters.

The team designed and engineered a metamaterial that uses tiny geometric surface features to successfully capture the electric and magnetic properties of a microwave to the point of total absorption.

"Three things can happen to light when it hits a material," says Boston College Physicist Willie J. Padilla. "It can be reflected, as in a mirror. It can be transmitted, as with window glass. Or it can be absorbed and turned into heat. This metamaterial has been engineered to ensure that all light is neither reflected nor transmitted, but is turned completely into heat and absorbed. It shows we can design a metamaterial so that at a specific frequency it can absorb all of the photons that fall onto its surface."

In addition to Padilla, the team included BC researcher Nathan I. Landy, Duke University Professor David R. Smith and researchers Soji Sajuyigbe and Jack J. Mock.

The group used computer simulations based on prior research findings in the field to design resonators able to couple individually to electric and magnetic fields to successfully absorb all incident radiation, according to their findings.

Because its elements can separately absorb the electric and magnetic components of an electromagnetic wave, the "perfect metamaterial absorber" created by the researchers can be highly absorptive over a narrow frequency range.

The metamaterial is the first to demonstrate perfect absorption and unlike conventional absorbers it is constructed solely out of metallic elements, giving the material greater flexibility for applications related to the collection and detection of light, such as imaging, says Padilla, an assistant professor of Physics.

Metamaterial designs give them new properties beyond the limits of their actual physical components and allow them to produce "tailored" responses to radiation. Because their construction makes them geometrically scalable, metamaterials are able to operate across a significant portion of the electromagnetic spectrum.

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

More articles from Physics and Astronomy:

nachricht First radio detection of an extrasolar planetary system around a main-sequence star
04.08.2020 | Max-Planck-Institut für Radioastronomie

nachricht The art of making tiny holes
04.08.2020 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>