Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Phoenix Lander Robotic Arm Camera Sees Possible Ice

02.06.2008
Scientists have discovered what may be ice that was exposed when soil was blown away as NASA's Phoenix spacecraft landed on Mars last Sunday, May 25. The possible ice appears in an image the robotic arm camera took underneath the lander, near a footpad.

"We could very well be seeing rock, or we could be seeing exposed ice in the retrorocket blast zone," said Ray Arvidson of Washington University, St. Louis, Mo., co-investigator for the robotic arm. "We'll test the two ideas by getting more data, including color data, from the robotic arm camera. We think that if the hard features are ice, they will become brighter because atmospheric water vapor will collect as new frost on the ice.

"Full confirmation of what we're seeing will come when we excavate and analyze layers in the nearby workspace," Arvidson said.

Testing last night of a Phoenix instrument that bakes and sniffs samples to identify ingredients identified a possible short circuit. This prompted commands for diagnostic steps to be developed and sent to the lander in the next few days. The instrument is the Thermal and Evolved Gas Analyzer. It includes acalorimeter that tracks how much heat is needed to melt or vaporize substances in a sample, plus a mass spectrometer to examine vapors driven off by the heat. The Thursday, May 29, tests recorded electrical behavior consistent with an intermittent short circuit in the spectrometer portion.

"We have developed a strategy to gain a better understanding of this behavior, and we have identified workarounds for some of the possibilities," said William Boynton of the University of Arizona, Tucson, lead scientist for the instrument.

The latest data from the Canadian Space Agency's weather station shows another sunny day at the Phoenix landing site with temperatures holding at minus 30 degrees Celsius (minus 22 degrees Fahrenheit) as the sol's high, and a low of minus 80 degrees Celsius (minus 112 degrees Fahrenheit). The lidar instrument was activated for a 15-minute period just before noon local Mars time, and showed increasing dust in the atmosphere.

"This is the first time lidar technology has been used on the surface of another planet," said the meteorological station's chief engineer, Mike Daly, from MDA in Brampton, Canada. "The team is elated that we are getting such interesting data about the dust dynamics in the atmosphere."

The mission passed a "safe to proceed" review on Thursday evening, meeting criteria to proceed with evaluating and using the science instruments.

"We have evaluated the performance of the spacecraft on the surface and found we're ready to move forward. While we are still investigating instrument performance such as the anomaly on TEGA [Thermal and Evolved Gas Analyzer], the spacecraft's infrastructure has passed its tests and gets a clean bill of health," said David Spencer of NASA's Jet Propulsion Laboratory, Pasadena, Calif., deputy project manager for Phoenix.

"We're still in the process of checking out our instruments," Phoenix project scientist Leslie Tamppari of JPL said. "The process is designed to be very flexible, to respond to discoveries and issues that come up every day. We're in the process of taking images and getting color information that will help us understand soil properties. This will help us understand where best to first touch the soil and then where and how best to dig."

The Phoenix mission is led by Peter Smith at the University of Arizona with project management at JPL and development partnership at Lockheed Martin, Denver. International contributions come from the Canadian Space Agency; the University of Neuachatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

MEDIA CONTACTS:
Guy Webster, Jet Propulsion Laboratory (818-354-6278,guy.webster@jpl.nasa.gov)
Dwayne Brown, NASA Headquarters (202-358-1726,dwayne.c.brown@nasa.gov)
Sara Hammond, University of Arizona (520-626-1974, shammond@lpl.arizona.edu)

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>