Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Little Man and the Cosmic Cauldron - VLT images nebulae in Carina

28.05.2008
On the occasion of the 10th anniversary of the Very Large Telescope's First Light, ESO is releasing two stunning images of different kinds of nebulae, located towards the Carina constellation.

The first one, Eta Carinae, has the shape of a 'little man' and surrounds a star doomed to explode within the next 100 000 years. The second image features a much larger nebula, whose internal turmoil is created by a cluster of young, massive stars.

Being brighter than one million Suns, Eta Carinae is the most luminous star known in the Galaxy. It is the closest example of a luminous blue variable, the last phase in the life of a very massive star before it explodes in a fiery supernova.

Eta Carinae is surrounded by an expanding bipolar cloud of dust and gas known as the Homunculus ('little man' in Latin), which astronomers believe was expelled from the star during a great outburst seen in 1843 [1].

Eta Carinae was one of the first objects to be imaged during First Light with ESO's VLT, 10 years ago. At the time, the image obtained with a test camera already showed the unique capabilities of the European flagship telescope for ground-based optical and infrared astronomy, as well as of its unique location on the mountain of Paranal. The image had a resolution of 0.38 arcseconds.

The new, recently obtained image reveals even more, with a resolution a factor of 6 to 7 times better. It was obtained with the NACO near-infrared instrument on Yepun, Unit Telescope 4 of the VLT. NACO is an adaptive optics instrument, which means that it can correct for the blurring effect of the atmosphere. And looking at the image, the power of adaptive optics is clear. The image quality is as though the whole 8.2-m telescope had been launched into space [2].

When viewed through the eyepiece of a small telescope, the Homunculus may indeed resemble a little man, but the astounding NACO image clearly shows a bipolar structure. Also very well resolved is the fine structure of the jets coming out from the central star.

Last year, the Very Large Telescope Interferometer also studied Eta Carinae in great detail and provided invaluable information about the stellar wind of Eta Carinae (see ESO 06/07).

The second image was obtained with the ISAAC infrared imager on Antu, Unit Telescope 1.

Located 9 000 light-years away, i.e. farther away than Eta Carinae, NGC 3576 is also in the direction of the southern Carina constellation. NGC 3576 is about 100 light-years across, that is, 25 times larger than the distance between the Sun and its closest neighbouring star.

This intriguing nebula is a gigantic region of glowing gas, where stars are currently forming. The intense radiation and winds from the massive stars are shredding the clouds from which they form, creating dramatic scenery. It is estimated that the nebula is about 1.5 million year old, the blink of an eye on cosmological timescales.

Astronomers from the University of Cologne [3], Germany, have studied this region with ESO's Very Large Telescope and ISAAC to determine the proportion of stars still having a protoplanetary disc from which planets form. Looking at young regions of different ages, the astronomers hope to estimate the lifetime of protoplanetary discs and thereby better understand how planets form. In particular, the scientists are interested in looking at the effect of the strong radiation of the stars, as well as of stellar encounters in these dense regions, on the survival of the discs.

Notes

[1]: In fact, since the distance to Eta Carinae is about 7500 light-years, the eruption must have taken place about 7700 years ago.

[2]: Given the large size of each Unit Telescope of the VLT, the resolution achievable when using adaptive optics (the 'diffraction limit') is as good in the longer near-infrared wavelengths, where NACO observes, as what the HST can achieve in the visible. The resolution is indeed close to 0.05 arcseconds, ten times better than what one can typically obtain without adaptive optics on an excellent site. A resolution of 0.05 arcseconds corresponds to being able to read a book 10 km away.

[3]: The astronomers are C. Olczak, R. Schödel, S. Pfalzner, and A. Eckart.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2008/pr-17-08.html

More articles from Physics and Astronomy:

nachricht The magic wavelength of cadmium
16.09.2019 | University of Tokyo

nachricht Tomorrow´s coolants of choice
16.09.2019 | Helmholtz-Zentrum Dresden-Rossendorf

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>