Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving magnetic fusion devices with gyrokinetic simulations of plasma turbulence

22.04.2008
The GYROKINETICS project team further developed the gyrokinetic simulation approach to plasma turbulence, which is expected to help improve the performance of magnetic confinement fusion devices.

Magnetic confinement fusion has the potential to provide a substantial proportion of the world’s energy needs in the 21st century in a safe and environmentally friendly way. Its realisation is, however, hampered by the complex behavior of hot collisionless plasmas (ion gases) in strong magnetic fields. Such plasmas are subject to temperature and density gradient driven microturbulence which leads to particle and heat losses and tends to keep the plasma from reaching a "burning" state.

Simulations are necessary if we are to understand and control plasma microturbulence. However, because fusion plasmas are virtually collisionless, a three-dimensional (i.e., in space) fluid description must, in principle, be abandoned, in favor of a six-dimensional (i.e., in phase space) kinetic one.

Fortunately, several processes on very small spatio-temporal scales – such as the gyrating motion of the particles around magnetic field lines – can be removed, analytically, from the basic equations, thus making the problem five-dimensional. This reduces the computational requirements by many orders of magnitude, without sacrificing accuracy. This approach is called gyrokinetics, which gave the present project its name.

The GYROKINETICS project was carried out in 2006 and 2007 by researchers from the Max Planck Institute for Plasma Physics at Garching, Germany, and the Ecole Polytechnique Fédérale of Lausanne, in Switzerland using DEISA’s resources under the DECI and the JRA3 frameworks.

As a result, the research group were able to show that certain small-scale turbulent processes can make substantial contributions to the overall heat transport carried by the plasma electrons. It turned out, in particular, that there often tends to be a scale separation between ion and electron thermal transport. While the former is usually carried more or less exclusively by long wavelength fluctuations, a substantial proportion of the latter can be carried by much smaller scales.

These findings represent an important new insight into the physics of turbulent transport in magnetized plasmas, and will have important implications for future full-torus simulations of large fusion devices, such as the International Thermonuclear Experimental Reactor ITER.

Kirsti Turtiainen | alfa
Further information:
http://www.deisa.eu/press/GYROKINETICS.pdf

More articles from Physics and Astronomy:

nachricht Atoms at the photo shoot
03.08.2020 | Humboldt-Universität zu Berlin

nachricht Collisions in the solar system: Bayreuth researchers explain the origins of stony-iron meteorites
03.08.2020 | Universität Bayreuth

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>