Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Specially designed soils could help combat climate change

02.04.2008
Could part of the answer to saving the Earth from global warming lie in the earth beneath our feet?

A team from Newcastle University aims to design soils that can remove carbon from the atmosphere, permanently and cost-effectively. This has never previously been attempted anywhere in the world. The research is being funded by the Engineering and Physical Sciences Research Council.

The concept underlying the initiative exploits the fact that plants, crops and trees naturally absorb atmospheric carbon dioxide (CO2) during photosynthesis and then pump surplus carbon through their roots into the earth around them. In most soils, much of this carbon can escape back to the atmosphere or enters groundwater.

But in soils containing calcium-bearing silicates (natural or man-made), the team believe the carbon that oozes out of a plant’s roots may react with the calcium to form the harmless mineral calcium carbonate. The carbon then stays securely locked in the calcium carbonate, which simply remains in the soil, close to the plant’s roots, in the form of a coating on pebbles or as grains.

The scientists are investigating whether this process occurs as it may encourage the growing of more plants, crops etc in places where calcium-rich soils already exist. It would also open up the prospect that bespoke soils can be designed (i.e. with added calcium silicates, or specific plants) which optimise the carbon-capture process. Such soils could play a valuable role in carbon abatement all over the globe.

The team will first try to detect calcium carbonate in natural soils that have developed on top of calcium-rich rocks or been exposed to concrete dust (which contains man-made calcium silicates). They will then study artificial soils made at the University from a mixture of compost and calcium-rich rock. Finally, they will grow plants in purpose-made soils containing a high level of calcium silicates and monitor accumulation of calcium carbonate there.

The multi-disciplinary research team, including civil engineers, geologists, biologists and soil scientists, is led by David Manning, Professor of Soil Science at Newcastle University. “Scientists have known about the possibility of using soil as a carbon ‘sink’* for some time,” says Professor Manning. ”But no-one else has tried to design soils expressly for the purpose of removing and permanently locking up carbon. Once we’ve confirmed the feasibility of this method of carbon sequestration, we can develop a computer model that predicts how much calcium carbonate will form in specific types of soil, and how quickly. That will help us engineer soils with optimum qualities from a carbon abatement perspective. A key benefit is that combating climate change in this way promises to be cheap compared with other processes.”

Significant scope could exist to incorporate calcium-rich, carbon-locking soils in land restoration, land remediation and other development projects. Growing bioenergy crops on these soils could be one attractive option.

“The process we’re exploring might be able to contribute around 5-10% of the UK’s carbon reduction targets in the future,” says Professor Manning. “We could potentially see applications in 2-3 years, including a number of ‘quick wins’ in the land restoration sector.”

Natasha Richardson | EurekAlert!
Further information:
http://www.epsrc.ac.uk

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>