Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strengthening Fluids With Nanoparticles

21.02.2008
New study paves way for using nanofluids in cameras, microdevices, and displays

Researchers at Rensselaer Polytechnic Institute have demonstrated that liquids embedded with nanoparticles show enhanced performance and stability when exposed to electric fields. The finding could lead to new types of miniature camera lenses, cell phone displays, and other microscale fluidic devices.

"This study may open up a new vista for using nanofluids in microscale and nanoscale actuator device applications,” said Theodorian Borca-Tasciuc, a professor of mechanical engineering at Rensselaer, who led the research project.

The manipulation of small volumes of liquid is critical for fluidic digital display devices, optical devices, and microelectromechanical systems (MEMS) such as lab-on-chip analysis systems. Most research into such systems has been conducted with regular liquids, but not nanofluids, which are liquids embedded with different nanoparticles. Nanofluids have been shown to exhibit some attractive properties, including enhanced heat transfer and capillary properties, as compared with regular, or pure, liquids.

Borca-Tasciuc’s team placed droplets of water-based solutions containing bismuth telluride nanoparticles onto a Teflon-coated silicon wafer. When an electric field was applied to the droplet, the researchers observed a strong change in the angle at which the droplet contacted the wafer. This change was much higher than that observed in liquids without the nanoparticles when tested under the same conditions.

“You use the same electrical field, but you get more change in shape with the nanofluid. We know the nanoparticles are critical in this process because without them the effect is much less strong,” Borca-Tasciuc said.

The ability to easily change the contact angle of droplets of nanofluids has potential applications for efficiently moving liquids in microsystems, creating new methods of focusing lenses in miniature cameras, or cooling computer chips. Borca-Tasciuc also envisions the research enabling new fully integrated micro- and nanoscale heat transfer systems that will not require a pump. “Our proof of concept really opens up many new exciting possibilities,” he said.

Borca-Tasciuc said his investigations into nanofluids are driven by sheer curiosity, and fostered by a strong interdisciplinary collaboration with Rensselaer Materials Science and Engineering Professor Ganapathiraman Ramanath.

“At first, we were curious to see what would happen if we introduced charged nanostructures — such as the ones we synthesize for exploring new cooling strategies in nanodevices — to the process of liquid wetting. But what started as a single, one-off experiment has now mushroomed into an exciting new research topic and expanded the scope of our collaboration,” Ramanath said.

The research article, titled “Electrowetting on dielectric-actuation of microdroplets of aqueous bismuth telluride nanoparticle suspensions,” was published in a recent issue of the journal Nanotechnology.

Along with Borca-Tasciuc and Ramanath, co-authors of the paper include Rensselaer post-doctoral research associate Arup Purkayastha, and graduate student Raj K. Dash.

The research was funded in part by the National Science Foundation and the New York State Foundation for Science, Technology and Innovation through the Interconnect Focus Center.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>